
ARMY RESEARCH LABORATORY

A Method for Characterizing
the Infrared Emissions From
Kinetic Energy Penetrators

Thomas Kottke

ARL-MR-329 August 1996

9960819 034
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden lor IM« collection ol Inlormition hi minuted to average 1 hour per response, Including the time lor reviewing Instruction«, teaching existing det* «OUTCM,

gathering end mtlnteinlng the data needed, and completing and reviewing the collection ol Information, Send comments regarding »It burden estimate or any other aspect ol tws
collection ol Information, Including suggestions tor reducing this burden, to Washington Headquertert Services, Directorate lor »formation Operations and Reports, 1215 Jefferson
Devi« Wohwav, Suite 1804, »nlnoton, V« 22i0?«302, end to the Office el Management end Budget. Paperwork Reduction Proloct(0704-OI88), Weshlnolon, DC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1996

3. REPORT TYPE AND DATES COVERED

Final, Mar - Nov 95
4. TITLE AND SUBTITLE

A Method for Characterizing the Infrared Emissions From Kinetic Energy
Penetrators

6. AUTHOR(S)

Thomas Kottke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-WT-WC
Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

PR: 1L161102AH43

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-MR-329

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A method is presented for characterizing the infrared QR) emissions from kinetic energy (KE) penetrators. This
two-step computer simulation method first generates a faceted surface model of the penetrator of interest and then
computes the associated IR signature. The IR emission from each facet is individually computed and then the
emissions from the facets are summed. This approach allows both the spectral distribution and spatial distribution of
the IR radiation emission to be determined. The methods for generating a facet model and computing the radiometric
quantities are presented in detail. Verification testing of this software is also demonstrated. These computer programs
have been written to run on IBM-compatible personal computer (PC) platforms. In order to encourage the migration
and application of these routines by other investigators, highly documented code listings of these modular programs
have been included in the appendices.

14. SUBJECT TERMS

infrared (IR) emission, IR radiation, modeling, kinetic energy penetrator

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

85
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENTS

The author would like to thank Mr. Charles R. Stumpfel of the Survivability Concepts Branch

(SCB) for helpful discussions concerning radiometry theory and for carefully reviewing the

technical details of this report along with Dr. Denis F. Strenzwilk (SCB). The author would also

like to thank Ms. Mary Pfeiffer and Mrs. Tracey Mummert of LB&B Associates, Inc. for reviewing

and polishing the final manuscript.

in

INTENTIONALLY LEFT BLANK.

IV

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS »i

LIST OF FIGURES vii

LIST OF TABLES vii

1. INTRODUCTION 1

2. PENETRATOR MODEL GENERATION 1

2.1 Penetrator Model Generation Overview 1
2.2 Conical Nose Cone Generation 2
2.3 Cylindrical Body Generation 4
2.4 Fin Generation 5
2.5 Aftbody Generation 7
2.6 Penetrator Surface Model Graphic Display 8
2.7 Penetrator Surface Model Temperature Assignment 10

3. PENETRATOR IR EMISSION CALCULATION 11

3.1 Penetrator IR Emission Calculation Overview 11
3.2 Spectral Radiant Emittance 12
3.3 Spectral Radiance 14
3.4 Spectral Irradiance 15
3.5 Spectral Radiant Flux 17
3.6 Total Radiant Flux 18
3.7 IR Emission Analysis Software Verification 19

4. SUMMARY 21

5. REFERENCES 23

APPENDIX A: PENETRATOR MODEL GENERATION SOFTWARE 25

APPENDIX B: PENETRATOR IR EMISSION CALCULATION SOFTWARE . . 69

DISTRIBUTION LIST 85

INTENTIONALLY LEFT BLANK.

VI

LIST OF FIGURES

Figure Page

1. Nose cone facet pattern and relevant program variables 3

2. Body facet pattern and relevant program variables 4

3. Fin facet pattern and relevant program variables 6

4. Aftbody facet pattern 8

5. Example of penetrator surface model graphic display 10

LIST OF TABLES

Table Page

1. Comparison of Verification Radiant Flux Calculations 21

VII

INTENTIONALLY LEFT BLANK.

VIII

1. INTRODUCTION

Temperatures of ballistic projectiles and kinetic energy (KE) penetrators in particular are

elevated as they approach their impact points by in-bore heating during the launch phase and

aerodynamic heating during the flight phase. The resulting emitted infrared (IR) radiation has

been exploited as a means for tracking such penetrators (Thomson 1991). This method for

projectile detection and tracking is particularly attractive because its inherently passive operation

does not conflict with measures that may be employed to reduce armored vehicle signatures.

In order to utilize the IR radiation from penetrators for tracking purposes, it is necessary to

characterize this radiation. Questions concerning the relative significance of various hot spots

on the penetrator, the dependence of the IR signature on projectile orientation, the amount of

signature variability introduced by projectile rotation, and requirements on detector and signal

processing speed need to be addressed. This report presents a method for investigating these

factors.

A two-step computer simulation process is presented that first generates a faceted surface

model of the penetrator and then computes the associated IR signature by considering the IR

emission from each individual facet. Both of these processes are presented in detail. A short

primer is also included on radiometry. This should not be interpreted as an insult to the reader.

Rather, this is presented as a common starting point in a field that is fraught with variability in

both notation and definition.

In order to encourage the application of these routines by investigators in related studies,

these programs have been written to run on IBM-compatible PC platforms. Highly documented

code listings of these modular programs are included in the appendices.

2. PENETRATOR MODEL GENERATION

2.1 Penetrator Model Generation Overview. A first step in characterizing the IR energy

emitted by a penetrator is to exercise an object generation program that creates a suitable

computer model. Geometric details of the penetrator of interest are supplied as input to this

program along with information about the temperature profile, thermal emissivities, orientation with

1

respect to the IR detector, and the manner in which the object is to be modeled. The program

then generates a surface model of the penetrator that recreates the form as a collection of small

planar surfaces, or facets. Each facet location and orientation is considered to determine whether

or not it is visible at the location of the IR detector. A data file is constructed that records the

location, orientation, area, temperature, and emissivity of all visible facets. This file can serve as

the input to the IR spectrum calculation program that is described later.

The operation of the penetrator model generation software is now described in detail. A listing

of this code is provided in Appendix A. Considerable effort has been expended to make the

operation of this code readily understandable so that it may be easily modified and applied to a

wide variety of applications. To achieve this goal, the program has been modularized through

the use of subroutines, the listing has been extensively documented, and variable names have

been utilized that describe their function or meaning. An unfortunate consequence of this explicit

presentation is the considerable length of the resultant listing. The author hopes that the clarity

of this code will offset any disadvantages resulting from its bulk.

Modeling of a penetrator-shaped object is simplified by the inherent simplicity and symmetry

of the generic penetrator. In essence, most penetrators can be described as a conical forward

section connected to a cylindrical body with equally spaced fins projecting radially at the rear.

The object model generation software subdivides the penetrator into similar sections. Generation

of the conical nose cone will now be described in detail. This will be followed by descriptions of

how the cylindrical body, the fins, and the body areas between the fins are generated.

2.2 Conical Nose Cone Generation. Figure 1 illustrates the manner in which the conical nose

cone section is modeled and the meaning of some of the relevant program variables. The overall

dimensions of the conical section are defined by the length and base radius through the variables

LengthNoseCone and RadNoseCone, respectively. Modeling resolution is determined by the

variables DeltaZNoseCone and NumNoseConeRadSeg%. DeltaZNoseConedefines the thickness

of each transverse nose cone "slice." NumNoseConeRadSeg% determines the number of radially

oriented nose cone facets in each transverse nose cone slice.

Using these parameters, the subroutine CalcNoseConePos calculates the positions of each

nose cone facet's corners, the area of each facet, and the components of each facet's outward

RadNoseCone

DeltaZNoseCone

number of radial nose cone facet positions = NumNoseConeRadSeg%

Figure 1. Nose cone facet pattern and relevant program variables.

vector facing normal in body coordinates. Body coordinates are referenced to the penetrator with

the z axis collocated with the penetrator's longitudinal axis and the x and y axes directed radially

outward. The origin of the body coordinate system is taken as the tip of the nose cone with the

positive z axis directed toward the rear of the penetrator. Calculation of the nose cone facet

normal components is simplified by the fact that, due to the radial symmetry, the z component

is the same for all of these facets.

The process of determining which nose cone facets are visible from the position of the IR

detector is simplified by the assumption that the penetrator is always aimed toward the general

direction of the IR detector. In this orientation, the conical nose cone will be closer to the detector

than any other portion of the penetrator. Thus, no other portion of the penetrator can obscure any

of the nose cone facets. Only the nose cone segments are capable of blocking other nose cone

segments from the view of the IR detector. The simple symmetry of the conical nose cone allows

the visibility of each facet to be determined by considering the orientation of the outward normal

unit vector relative to the unit vector directed from the facet toward the IR detector. In particular,

the dot product between these two unit vectors is computed. If this dot product is nonnegative,

then the facet's outward normal unit vector has a component directed toward the detector and the

facet surface is visible to the detector. Facets for which this dot product is negative are facing

away from the IR detector, and therefore the contribution of these facets to the overall IR

spectrum can be disregarded.

2.3 Cylindrical Body Generation. The simple geometry of the cylindrical penetrator body

allows the associated facet attributes to be readily calculated. This portion of the penetrator is

assumed to extend from the base of the nose cone to the forwardmost fin position. Figure 2

displays the geometry of the cylindrical body and the significance of the relevant parameters. The

length and radius of the penetrator body are defined by the parameters LengthBody and

RadBody, respectively. Parameters DeltaZBody and NumBodyRadSeg% determine the size of

each body facet and thus effectively control the resolution of the modeling for this portion of the

penetrator.

The subroutine CalcBodyPos calculates the positions of the corners, the area, and the

components of the outwardly facing normal unit vector for all the penetrator body facets in body

coordinates. This task is simplified by the fact that the z component of the unit normal vectors

is zero for all the body facets.

< LengthBody ►

RadBody

DeltaZBody

number of radial body facet positions = NumBodyRadSeg%

Figure 2. Body facet pattern and relevant program variables.

The assumption that the penetrator is aimed in the general direction of the IR detector also

streamlines the process of determining which body facets are visible to the detector. Because

the radius of any portion of the nose cone is always less than or equal to the body radius, the

nose cone facets can never block any body facets that would otherwise be visible to the IR

detector if the nose cone were removed. Therefore, the visibility of a body facet is also

determined from the sign of the dot product between the facet's outward facing normal unit vector

and the unit vector directed from the facet toward the detector.

2.4 Fin Generation. The fins are by far the most complex portion of the penetrator to be

modeled. Figure 3 displays a generic fin and the parameters that define its shape and the

manner in which a surface model is generated. The base length of the fin, where it attaches to

the penetrator's body, is expressed by the variable LengthBaseFin. A forward portion of the fin

is assumed to have a tapered profile. The extent of this tapered section is determined by the

variable LengthLeadEdgeFin. DeltaZFin defines the size of the subdivisions along the z axis that

the fin is partitioned into during the modeling process. The radial height of the fin is determined

by the parameter HeightFin, and this length is subdivided into segments of dimension

DeltaRadFin. Finally, the fin's thickness is quantified by the variable ThickFin. Facets along the

edge of the fin that have a dimension defined by the variable ThickFin are referred to as edge

facets. The remaining facets are referred to as side facets.

The corner positions, areas, and body coordinate components of the outward facing normal

unit vectors are calculated by the subroutine CalcFinPos using the following simplifying

observations.

a) All the edge facets in the tapered portion of the fin have the same normal unit vector z

component.

b) All the edge facets in the tapered portion of the fin have the same area.

c) All the edge facets in the nontapered portion of the fin have a normal unit vector z

component of zero.

d) All the edge facets in the nontapered portion of the fin have the same area.

DeltaZFin ThickFin

LengthLeadEdgeFin HeightFin

LengthBaseFin

Figure 3. Fin facet pattern and relevant program variables.

e) Because the penetrator is assumed to be aimed in the general direction of the IR detector,

the trailing edge of the fin will never be visible, and therefore the edge facets on the trailing

edge need not be considered.

f) All the side facets have a normal unit vector z component of zero.

g) All the side facets on one side of a given fin have the same normal unit vector x and y

components.

h) All the side facets in the nontapered portion of the fin have the same area.

The determination of which fin facets will be visible at the location of the IR detector is also

somewhat involved. Recall that the visibility of the nose cone and body facets was determined

by a simple vector dot product that, in essence, decided whether or not a facet surface pointed

toward the IR detector. That is, the orientation of the detector relative to the penetrator precluded

the possibility that a facet in these portions of the penetrator could point toward the detector and

still be blocked by another facet. This is not the case for the facets of the fin. Fin facets that

point toward the detector may still not be visible to the detector because they are blocked by a

facet in the nose cone, the body, the aftbody, or a facet on another fin. The aftbody portion of

the penetrator has yet to be discussed. It is that portion of the penetrator body that is between

the fins. Anyway, the subroutine Eclipse determines whether fin facets that point toward the

detector are blocked by a facet in some other portion of the penetrator. Again, a number of

observations are noted that streamline the associated calculations. Several of the following tests

consider the fin's radial unit vector which is defined as the unit vector in the plane of the fin that

is perpendicular to the z axis, or body, of the penetrator.

a) A nose cone, body, or aftbody facet will never block a fin facet for which the dot product

of the fin's radial unit vector with the unit vector directed from the facet toward the detector

is positive. Fin facets in this category must still be checked for blockage by facets on other

fins.

b) A facet of a given fin with a surface that points toward the detector will never be blocked

by another facet on that fin.

c) The facets on a fin can only be blocked by the facets on another fin for which the dot

product between the fin radial unit vector and the unit vector directed from the facet toward

the viewer has a value that is closer to 1. In other words, a fin facet can only be blocked

by the facets of fins that are in front of it, as viewed by the detector.

d) An aftbody facet will never block a facet on a fin for which the dot product between the

radial unit vector and the unit vector directed from the facet toward the viewer is

nonnegative.

2.5 Aftbody Generation. The aftbody is that portion of the projectile body that is located

between the fins. A representative aftbody area is illustrated in Figure 4. The overall longitudinal

length and subdivision dimensions are the same as for the fins—namely LengthBaseFin and

DeltaZFin, respectively. The tangential facet dimension is calculated from the circumference of

the projectile body, the thickness of the fins, the total number of fins, and the number of radial

facets between adjacent fins.

Figure 4. Aftbodv facet pattern.

Aftbody facet corner positions, areas, and orientations, relative to the body coordinate system,

are computed by the subroutine CalcAftBodyPos. These calculations are simplified by the fact

that all the aftbody facets have the same area and a normal vector z component of zero. Each

facet's orientation and the subroutine Eclipse are utilized to determine which aftbody facets are

visible to the IR detector.

2.6 Penetrator Surface Model Graphic Display. After the facet corner positions and outward

facing normal unit vector components have all been determined in the body coordinate system,

an image of the penetrator is generated that illustrates the appearance of the penetrator from the

vantage point of the IR detector. This process requires a transformation of all the facet corner

positions from the body coordinate system of the penetrator to the space coordinate system of

the detector. The origin of the space coordinate system is taken to be at the detector with the

positive z axis extending horizontally to the right, the y axis extending vertically upward, and the

x axis extending horizontally forward, relative to the detector's view of the penetrator. The

transformation from body to space coordinates is accomplished by determining the Eulerian

angles that relate the two coordinate systems and expressing the elements of the orthogonal

transformation matrix as trigonometric functions of these angles (Goldstein 1950). Multiplication

8

of the body coordinate position vectors by the orthogonal transformation matrix yields the

corresponding position vectors in the space coordinate system.

The perspective view of the penetrator is made more realistic by appropriate shading of the

individual facets. Each facet position is displayed on the graphic image in a shade of gray that

is determined from the facet's orientation relative to the viewpoint of the detector. In particular,

the intensity of the shade of gray is proportional to the dot product between the facet's outward

normal unit vector and the unit vector directed from the facet to the detector. This has the effect

of imparting a dark coloration to facets that are seen on edge, while facets that are viewed face-

on are displayed as a bright white. Thus, the illusion is created that light is glinting off appropriate

portions of the penetrator from a light source that is collocated at the position of the detector.

Although this effect is dramatic when displayed on a computer monitor, it does not show up well

on printed hard copies. Therefore, a representative example of such an image is displayed in

Figure 5 without the shading enhancement. This image was generated using the following

penetrator input parameters.

nose cone length: 100 mm

nose cone longitudinal facet length: 10 mm

nose cone radius: 14 mm

number of nose cone radial facets: 24

body length: 420 mm

body longitudinal facet length: 20 mm

body radius: 14 mm

number of body radial facets: 24

number of fins: 6

fin thickness: 3 mm

fin total base length: 120 mm

fin leading edge base length: 80 mm

fin longitudinal facet length: 10 mm

fin height: 30 mm

fin transverse facet length: 5 mm

number of aftbody facets between adjacent fins: 4

Euler angles: 88.1°, 84.3°, 12°

Figure 5. Example of penetrator surface model graphic display.

A graphical image of the penetrator is provided to the user as a quick "go/no go" check that

the software is indeed modeling the intended scenario. Erroneous entry of penetrator dimension

specifications are generally obvious from the resulting distorted image.

2.7 Penetrator Surface Model Temperature Assignment. The final computational task for the

penetrator surface model generation software is the determination and allocation of a temperature

to each facet. This is accomplished by interpolating between temperature values that are

assigned to specific penetrator locations. In particular, the user must assign temperatures to the

tip and base of the nose cone, the forward and rearmost body locations, the leading and trailing

fin edges, the base fin position relative to the fin tip, and the forward and rearmost aftbody

locations. Each facet's temperature is computed by determining its position relative to the

appropriate defined temperature locations and interpolating a position-weighted intermediate

temperature value. These calculations are handled by the subroutines AssignNoseTemp,

AssignBodyTemp, AssignFinSideTemp, AssignFinEdgeTemp, and AssignAftBodtTemp. At the

present time, these interpolations are a linear function of the facet's location between the defined

boundary positions. In time, as computational or experimental determinations of actual penetrator

flight temperatures become more quantitative, a more sophisticated interpolation process may be

warranted. The modular nature of the temperature assignment subroutines will allow higher order

interpolation techniques to be readily implemented.

10

A thermal emissivity is also assigned to each facet. This requires no computation. Rather,

each facet within each region of the penetrator (nose cone, body, fin, or aftbody) is assumed to

have the same direction-independent assigned thermal emissivity value. Directional emissivities

are reserved for incorporation in future refinements of this process.

A data file is generated that contains the pertinent information about each penetrator surface

facet. In particular, the recorded data include the region of the penetrator that the facet is located

in, the facet corner positions in space coordinates, the value of the dot product between the

facet's outward normal unit vector and the unit vector directed from the facet toward the detector,

the area of the facet, the temperature of the facet, and the facet's thermal emissivity. Each data

file includes an extensive leader that lists the geometric and thermal parameters that were used

to generate the data set. This data file can be used as the input to the spectral calculation

software that will be considered next.

3. PENETRATOR IR EMISSION CALCULATION

3.1 Penetrator IR Emission Calculation Overview. Recall that the goal of this modeling effort

is to predict the amount and nature of the radiant energy that is generated by a heated penetrator

and is collected by a suitable detector. To facilitate the required calculations, the penetrator has

been modeled as a collection of surface facets. The approach is to separately consider the

radiant energy that interacts with the detector from each facet and then sum these individual

contributions to determine a total rate of radiant energy transfer. Effects arising from atmospheric

absorption are not included due to the relatively short range over which IR sensors are expected

to operate. The radiant energy transfer is characterized both spectrally and spatially. That is,

the spectrum of the radiant energy that is emitted by various portions of the penetrator and

incident upon the detector is determined. A detailed description of this process is now presented.

A newcomer to the field of radiometry is often bewildered by the abundance of terminology

that, at first glance, appears to be describing the same thing. As an example, consider the fact

that radiant energy, radiant energy density, radiant flux, radiant emittance, radiant photon

emittance, radiant intensity, radiance, and irradiance are all terms that are commonly used to

describe radiant energy transfer. In fact, this profusion of nomenclature arises from the need to

consider a variety of scenarios involving radiation sources and detectors, both individually and

11

in combination, using a number of conventional normalization schemes. Luckily, a properly

charted course will allow the reader, and even the author, to navigate this linguistic labyrinth.

The first task is to consider the spectral radiant emittance, which is the rate of radiant energy

emission into a hemisphere per unit source area per unit wavelength interval at a particular

wavelength. Already this is beginning to sound rather complicated. However, at this point the

only considerations are the type and the rate at which radiant energy is coming off of a facet with

no particular concern for where it is going. Clearly, the next step is to realize that the emitted

radiation needs to go somewhere. This leads to a consideration of spectral radiance where not

only the rate at which the radiant energy coming off a facet is addressed, but also the direction

of that radiant energy. Up until this point, the facets have been treated as isolated sources. By

finally introducing the detector into the scenario, the spectral irradiance can be calculated, which

is a measure of the rate at which radiant energy from a facet is incident on the detector per unit

detector area per unit wavelength interval at a particular wavelength. This is a general quantity

because no assumptions have been made about the detector system. Additional radiometric

quantities can be considered for specific detection apparatus.

If the collection area of the detector is known, the spectral radiant flux can be calculated. This

is a measurement of the rate at which incident radiant energy enters the detector per unit

wavelength interval at a particular wavelength. Of course, not all the radiant energy that enters

the detector is necessarily recorded by the detector. If the spectral response of the detection

system is known, then the total rate at which the detector records the incident radiant energy can

be computed. This sounds a lot like the intermediate goal. So at this point a small victory will

be declared, the same procedure will be followed for all the other facets, and all the individual

facet contributions will be summed together. To keep things honest, the final result for a test

case will be examined for validity to determine whether or not any celebrations were premature.

So, with this radiometric roadmap in hand, the journey is begun by considering the spectral

radiant emittance.

3.2 Spectral Radiant Emittance. All objects emit and absorb radiant energy. The quantity

and character of this radiant energy depends on the temperature and nature of the object. A

class of particularly convenient materials, known as black bodies, effectively absorb all incident

radiant energy. Good absorbers of radiant energy also turn out to be good emitters. Thus, black

12

bodies are the best emitters of radiant energy. The spectral distribution of the radiant energy

emitted by a black body is described by Planck's law,

where:

Wx-°1 1 (1)

\Nk = spectral radiant emittance, W-cm 2-|im 1

X = wavelength, jim

T = absolute temperature, K

q = 3.742 x104, W-cm_2-nm4

C2 = 1.439 x104, UJTVK.

In words, this expression calculates the radiant energy emitted by a black body of temperature

T in a spectral band that is centered at wavelength X per unit area per unit wavelength interval.

Notice that this equation does not include any parameters that specify material properties of the

emitting black body. This is in fact one of the conveniences associated with considering black

body radiators. Black body radiation is totally dependent on the temperature of the black body

and is totally independent of the particular material.

Unfortunately, most materials of unspecified configuration do not naturally exhibit black body

characteristics. However, the spectral radiant emittance of objects that are not black bodies can

be approximated by multiplying the expression of Equation 1 by an effective emissivity. An

object's emissivity is a measure of its ability to emit radiant energy. Black bodies have an

emissivity value of 1 while all other objects have an effective emissivity between 0 and 1.

Emissivities can themselves be functions of both wavelength and temperature. Variations in

spectral radiant emittance arising from an emissivity wavelength dependence are generally small

compared to the strong wavelength dependence exhibited by Equation 1. The temperature

dependence of the emissivity of representative metals has been shown to be weak over the

temperature range 300-700 K (Snyder, Gier, and Dunkle 1955). It should also be noted that

observed emissivity can depend on oxidation and mechanical surface treatments (Bramson 1968).

13

For all these reasons, and the fact that emissivity data in the literature is often sketchy at best,

the use of a constant effective emissivity value is a common approximation.

3.3 Spectral Radiance. The next step is to consider where the radiant energy emitted by a

facet is directed. At this point another common assumption is invoked that utilizes the angular

distribution pattern of radiation emitted from perfectly diffuse sources. For such sources, known

as Lambertian sources, the intensity of emitted radiation is proportional to the cosine of the angle

between the surface normal and the emitted radiation direction of interest. When first

encountered, this functional dependence for the radiation distribution pattern may appear

somewhat arbitrary. However, recall that the effective projected area of a surface also depends

on the cosine of the same angle. The spectral radiance of a perfectly diffuse source is therefore

independent of viewing angle. A commonly cited example of a perfectly diffuse source is the sun.

As predicted, the image of the sun appears to be uniformly bright in spite of the fact that the

central portion is viewed face on while the edges are observed at a large angle from the solar

surface normal.

Black bodies act as ideal diffuse sources. Real surfaces that are not black body radiators also

tend to follow Lambert's cosine law quite closely at smaller viewing angles. However, at larger

viewing angles, the amount of deviation from the ideal diffuse source radiation pattern is both

material and surface topography dependent and can be significant (Hudson 1969).

As noted, one advantage in assuming a Lambertian source radiation pattern is the

independence of the spectral radiance with respect to viewing angle. Another advantage is the

fact that the spectral radiance from a surface radiating out into a hemisphere is related to the

spectral radiant emittance by the simple relation

Nx = WX/TC (2)

where:

-2 ..„,-1 Wx = spectral radiant emittance, W-cm -\m\

N^ = spectral radiance, W-cm"2-sr"1-nm"1.

14

At this point it is worth digressing for a quick cautionary note. As stated, the Lambertian

surface is assumed to radiate energy into a complete hemisphere of space. A hemisphere

contains 2% steradians of solid angle. Therefore, a common impulse is to assume that the

spectral radiant emittance and spectral radiance are related by a factor of 2JI rather than the

prescribed factor of n. As noted by Hudson (1969), "Of all the mistakes a newcomer to

radiometry may make, confusion over this factor of 2 is an odds-on favourite." Avoiding this pitfall,

we press on.

3.4 Spectral Irradiance. Having quantified the rate and the distribution of energy emitted by

our radiant source, we are in a position to introduce the detector into the scenario and consider

the rate at which radiant energy of a particular wavelength is incident on the detector per unit

detector area per unit wavelength interval. The spectral irradiance at the detector can be related

to the spectral radiance of the source facet using the relation (Brown 1992)

HX = Asource'ßdefNX./Adet (3)

where:

HJL = spectral irradiance, W-cm"2-fim"1

Asource = effective source area, cm2

ßdet = solid angle subtended by detector, sr

Hx = spectral radiance, W-cm~2-sr~1-|im~1

Adet - effective detector area, cm2.

The first multiplicative factor on the right-hand side of Equation 3 is the effective area of the

source. In this case, the source is the penetrator model facet under consideration, and the

effective area is the area of the facet as "seen" by the detector. This effective area, or projected

area, is obtained by multiplying the actual area of the facet by the cosine of the angle between

the facet's outward normal vector and the normal vector directed from the facet to the detector.

In equation form this can be expressed as

15

Asource = (n-r)-Af <4>

where:

Asource = effective source area, cm2

ft = facet normal unit vector

f = unit vector directed from facet to detector

Af = facet area, cm2.

Conveniently, the areas of the facets and their outward normal components are included in the

data file of information that is created by the previously discussed penetrator model generation

software.

The second multiplicative factor on the right-hand side of Equation 3 is the solid angle

subtended by the detector. A common definition for solid angle is

dß = -LdA (5)
r2

where:

dQ = incremental solid angle

r = distance to the area

dA = incremental area.

From this expression it is easy to see why spheres, with surface areas of 47ir2, are associated

with a solid angle of 4rc steradians. Some of the confusion surrounding solid angles may result

from the fact that although they are expressed in units of steradians, they are in fact

dimensionless quantities—as can be concluded from a dimensional check of Equation 5.

Anyway, in order to determine the solid angle subtended by the detector, the distance from the

source facet to the detector and the effective area of the detector must be known. For purposes

16

of calculation, the effective detector area is assumed to be 1 cm2. Therefore, the spectral

irradiance can be expressed as

H, = (n-r)-A 1 N* (6)

where:

Hk = spectral irradiance, W-cnrr2-unr1

ft = facet normal unit vector

f = unit vector directed from facet to detector

Af = facet area, cm2

r = distance from facet to detector, cm

Nx = spectral radiance, W-cm"2-um-1.

This formulation is general in the sense that it characterizes the nature of the radiation that is

incident on the detector without making any assumptions about the detector itself.

3.5 Spectral Radiant Flux. Equation 6 is a generalized expression for the spectral irradiance

at the site of a detector that is a distance r from a source facet. This is a measure of the rate at

which energy is transferred to a unit area by radiation that is incident on that surface and that

spans a specific interval of wavelengths. For a specific detector of known effective area, the

spectral radiant flux can be determined. This is a measure of the rate at which radiant energy

is conveyed to the detector position per unit wavelength interval at a particular wavelength. The

spectral radiant flux can be determined from the spectral irradiance using the expression

Pjt-Adei-Hx (7)

17

where:

P^ = spectral radiant flux, W-nm"1

Adet = detector area, cm2

Hx = spectral irradiance, W-cm~2-nm-1.

For application to specific systems where the detection spectral response is known, the total rate

at which the detector accepts radiant energy, or total radiant flux, can be determined. A method

for determining this quantity is now presented.

3.6 Total Radiant Flux. Having arrived at an expression for the rate at which radiant energy

is incident on the detector at a particular wavelength, it is now possible to consider the total rate

at which the detection system acquires radiant energy. This requires a knowledge of the spectral

response of the detector system. In this case, the detector system response is assumed to

include the effects of all focusing and filtering elements in addition to the conversion efficiency

of the detector itself. The total radiant flux is computed by summing the spectral radiant flux,

modulated by the detection system response, over a band of wavelengths that corresponds to

the detector's active region.

Recall that the spectral radiant flux is defined as the rate of transfer of radiant energy per unit

wavelength interval at a particular wavelength. Within a particular wavelength interval the spectral

radiant flux is assumed to be constant. The strong wavelength dependence exhibited by

Equation 1 suggests that this assumption is only valid over a narrow range of wavelengths.

Therefore, in practice, the radiant emittance, radiance, irradiance, and radiant flux of broad

wavelength regions are calculated by subdividing the region into many narrow subregions,

calculating the spectral quantity of each subregion, and then summing the individual results. For

a wavelength region extending from A.., to Xg that is divided into N subregions with central

wavelength values of X{ and wavelength spans of (Aty, the total radiant flux for a detector system

with spectral response i\h can be expressed as

«

p(h^) =EivFV(A*)i-
i=i ' '

18

At this point, one of the stated goals has been achieved. A method has been outlined for

calculating the rate of radiant energy transfer, or radiant flux, between a single facet and a

detector with a specified spectral response. The next step is to calculate the same quantity for

various sections of the penetrator. Because the penetrator has been modeled as a collection of

facets, this step is straightforward. The radiant flux is separately calculated for all the facets in

a region of interest, and the individual results are summed together to yield the total radiant flux.

The spectral analysis software that performs these functions is listed in Appendix B.

3.7 IR Emission Analysis Software Verification. The spectral analysis software is verified by

comparing its results against the output from a commercially available software package that can

calculate the IR emission spectrum for simple geometries. Integrated Sensors (Integrated

Sensors, Inc. 1989) offers a disk-based IR spectrum calculator that computes the total flux and

black body spectrum for sources with a specified temperature, range of emission wavelengths,

emissivity, and field of view. Careful selection of input parameters for the penetrator generation

and spectral analysis software presented in this report and Integrated Sensor's IR spectrum

calculator can yield equivalent scenarios for which the outputs can be directly compared.

One such scenario is a circular source with a 10-mm radius located 10 m from a 1-cm

detector that accepts IR energy in the wavelength band from 2.0 |xm to 5.5 \im. The following

penetrator generation and spectrum analysis input parameters were used to create this case.

nose cone length 10 mm

nose cone longitudinal facet length 1 mm

nose cone radius 10 mm

number of nose cone radial facets 50

body length 20 mm

body longitudinal facet length 10 mm

body radius 10 mm

number of body radial facets 50

number of fins 1

fin thickness 1 mm

fin base length 10 mm

fin leading edge length 6 mm

fin longitudinal facet length 2 mm

fin height 4 mm

19

fin radial facet length 2 mm

number of aftbody facets between fins 1

Euler angles 90, 90, -90

nose cone tip temperature 573 K, 873 K, or 1,173 K

nose cone rear temperature same as nose cone tip temperature

nose cone emissivity 0.1

body forward temperature 0 K

body rear temperature 0 K

body emissivity 0

fin leading edge temperature 1 K

fin trailing edge temperature 0 K

fin emissivity 0

aftbody forward temperature 0 K

aftbody rear temperature 0 K

aftbody emissivity 0
IR emission band 2.0 pm to 5.5 jim

calculation spectral window width 0.01 \im

penetrator range 10m

These parameters yield a 10-mm radius penetrator that is aimed directly toward the detector.

Thus, the nose cone appears circular to the detector. The extraneous body, fin, and aftbody

penetrator components are effectively eliminated from the IR emission calculation by their

assignment of very low temperatures and emissivities of 0. Three test cases are considered with

nose cone temperatures of 573 K, 863 K, and 1,173 K.

The following inputs to Integrated Sensor's black body calculator yielded the equivalent

scenario.

temperature 573 K, 873 K, or 1,173 K

wavelength band starting value 2.0 pm

wavelength band ending value 5.5 |xm

emissivity 0.1

detector solid angle 1 E -6

source area 3.1416 cm

20

The results of the radiant flux calculations for the common scenario as determined using these

two different programs are presented in Table 1.

Table 1. Comparison of Verification Radiant Flux Calculations

Temperature
(K)

Results From Software
Presented in This Report

Results From Integrated
Sensor's Black Body Calculator

573 1.87E-8W 1.87E-8W

873 1.89E-7W 1.89E-7W

1,173 6.92E-7 W 6.91 E-7W

The close correlation between the results of these two IR emission calculation programs indicates

that the results of the software presented in this report are numerically valid.

4. SUMMARY

A method is presented for characterizing the IR emissions from KE penetrators. Descriptions

of this type are required for the application of IR tracker systems where questions concerning

apparent source location, orientation effects, rotation effects, and detection speed need to be

addressed. This two-step computer simulation method first generates a faceted surface model

of the penetrator of interest and then computes the associated IR signature. The IR emission

from each facet is individually computed. This approach allows both the spectral distribution and

spatial distribution of the IR radiation emission to be determined. The methods for generating a

facet model and computing the radiometric quantities are presented in detail. Verification testing

of this software is also demonstrated.

These computer programs have been written to run on IBM-compatible PC platforms. In order

to encourage the migration and application of these routines by other investigators, highly

documented code listings of these modular programs have been included in the appendices.

Future reports will highlight the results of IR characterization studies of specific scenarios.

21

INTENTIONALLY LEFT BLANK.

22

5. REFERENCES

Bramson, M. A. Infrared Radiation, a Handbook for Applications. New York: Plenum Press,
1968.

Brown, T. G. Radiometrv and Detection. New York: University of Rochester, 1992.

Goldstein, H. Classical Mechanics. Reading, MA: Addison-Wesley, 1950.

Hudson, Jr., R. D. Infrared System Engineering. New York: Wiley-lnterscience, 1969.

Integrated Sensors, Inc. "Black Body Calculator, Version 1.3." Goleta, CA, 1989.

Snyder, N. W., J. T. Gier, and R. V. Dunkle. "Total Normal Emissivity Measurements on Aircraft
Materials Between 100 and 800° F." Transactions of the ASME, pp. 1011-1019, October
1955.

Thomson, G. M. "Passive IR Tracking of Incoming Kinetic Energy Munitions." Proceedings of
the 1991 BRL Technical Symposium: Emerging Technology for the Future Battlefield.
Aberdeen Proving Ground, MD, November 1991.

23

INTENTIONALLY LEFT BLANK.

24

APPENDIX A:

PENETRATOR MODEL GENERATION SOFTWARE

25

INTENTIONALLY LEFT BLANK.

26

This software generates a facet model of a kinetic energy (KE) penetrator that can

subsequently be used to calculate the spatial and spectral distributions of associated infrared (IR)

emissions. Microsoft QuickBasic 4.5 is used as the programming environment. If you have any

questions about this code, please contact Tom Kottke at:

AMSRL-WT-WD
Survivability Concepts Branch
Weapons Concepts Division, Bldg. 120
Weapons Technology Directorate
U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066
(410) 278-2557

'the size of the arrays is allowed to
'change as required during execution

REM$DYNAMIC ., , _,
'subroutines are declared

DECLARE SUB InputParameters ()
DECLARE SUB CalcNoseConePos ()
DECLARE SUB CalcBodyPos ()
DECLARE SUB CalcFinPos ()
DECLARE SUB CalcBoxExtremes ()
DECLARE SUB CalcEulerElem ()
DECLARE SUB TransCoordBS XOId, YOld, ZOId, XSpace, YSpace, ZSpace)
DECLARE SUB TransCoordSB (XSpace, YSpace, ZSpace, XBody, YBody, ZBody)
DECLARE SUB CalcScreenSize ()
DECLARE SUB lnit3DDisplay ()
DECLARE SUB DisplayBox ()
DECLARE SUB Plot3DPoint (X, Y, Z, C1)
DECLARE SUB Plot3DLine (X, Y, Z, C1)_ ÄÄ„ . . T *. „„
DECLARE SUB Eclipse (XTest, YTest, ZTest, FinNumber%, FinUnitCOSValue, Type$, Ans%)
DECLARE SUB CalcFinEdgeMidPoint (FinNumber%, LeadEdgeLongSegNumber%, XMid, YMid,

ZMid)
DECLARE SUB CalcFinSideMkJPoint (FinNumber%, LeadEdgeLongSegNumber%,

FinRadSegNumber%, SideNumber%, XMid, YMid, ZMid)
DECLARE SUB CalcAftBodyPos () _,„_.„*... ^ «..^
DECLARE SUB CalcAftBodyMidPoint (ZSegment%, FinNumber%, AftBodyRadSegNumber%, XMid,

YMid, ZMid)
DECLARE SUB LoadDataFile (Type$, X(), Y(), Zft, NormalDotProduct, Area, Temp, Emis)
DECLARE SUB AssignNoseTemp (ZSegment%, NoseTemp)
DECLARE SUB AssignBodyTemp (ZSegment%, BodyTemp)
DECLARE SUB AssignFinSideTemp (LeadEdgeLongSegNumber%, FinRadSegNumber%, FinTemp)
DECLARE SUB AssignFinEdgeTemp (LeadEdgeLongSegNumber%, FinTemp)
DECLARE SUB AssignAftBodyTemp (ZSegment%, AftBodyTemp)

C1 = 1
DIM Euler(3)

'projectile parameters are input
CALL InputParameters

'array variables are dimensioned
DIM ZNoseConePos(NumNoseConeLongSeg%, 4)
DIM XNoseConePos NumNoseConeLongSeg%, NumNoseConeRadSeg%, 4)
DIM YNoseConePos NumNoseConeLongSeg%, NumNoseConeRadSeg%, 4)
DIM NoseConeArea(NumNoseConeLongSeg%)
DIM XNoseConeNormal(NumNoseConeRadSeg%)
DIM YNoseConeNormal(NumNoseConeRadSeg%)

27

DIM XBodyPos(NumBodyRadSeg%, 4)
DIM YBodyPos(NumBodyRadSeg%, 4)
DIM XBodyNormal(NumBodyRadSeg%) .
DIM YBodyNormal(NumBodyRadSeg%)

DIM ZFinEdgePos(NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg%, 4)
DIM YFinEdgePos NumFins%, NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg%, 4
DIM XFinEdgePos NumFins%, NumLeadEdgeLongSeg% + NumNonl_eadEdgeLongSeg%, 4
DIM ZFinPos(NumLeadEdgeLongSeg% + NumNonl_eadEdgeLongSeg%, 4)
DIM YFinPos(NumFins%, NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg%,

NumFinRadSeg%, 2, 4)
DIM XFinPos(NumFins%, NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg%,

NumFinRadSeg%, 2, 4)
DIMXFinLeadEdgeNormal(NumFins%), XFinNonLeadEdgeNormal(NumFins%
DIM YFinLeadEdgeNormal(NumFins%), YFinNonLeadEdgeNormal(NumFins%)
DIM XFinSideNormal(NumFins%, 2), YFinSideNormal(NumFins%, 2)
DIM ZAftBodyPos(NumLeadEdgeLongSeg% + NumNonl_eadEdgeLongSeg%, 4)
DIM XAftBodyPos NumFins%, NumAftBodyRadSegPerFin%, 4)
DIM YAftBodyPos(NumFins%, NumAftBodyRadSegPerFin%, 4)
DIM XAftBodyNormal(NumFins%, NumAftBodyRadSegPerFin%)
DIM YAftBodyNormal(NumFins%, NumAftBodyRadSegPerFin%)
DIM X(4), Y(4), Z(4), FinLeadSideArea(NumLeadEdgeLongSeg%)

ScreenWidth = 638
ScreenHeight = 398
AspectRatio = .97

CALL CalcNoseConePos

CALL CalcBodyPos

CALL CalcFinPos

CALL CalcAftBodyPos

CALL CalcBoxExtremes

CALL CalcEulerElem

'nose cone facet coordinates, areas, and
'orientations are calculated

'body facet coordinates, areas, and
'orientations are calculated

'fin facet coordinates, areas, and
'orientations are calculated

'afterbody facet coordinates, areas, and
'orientations are calculated

'determining the extreme positions

'the matrix elements that are necessary
"to make the transformations between
'projectile and space coordinates are
'calculated

'the components of the normal vector
'pointing from the projectile's body
'coordinate origin to the viewer are
'calculated in the body coordinate
'system, note that the viewer's (or the
'computer monitor's) coordinate system
'has the positive x axis pointing into
'the screen, the positive y axis pointing
'up, and the positive z axis pointing
'toward the right.

CALL TransCoordSBM, 0, 0, XViewNormal, YViewNormal, ZViewNormal)
'an appropriate scale for the graphic
'display screen is determined

CALL CalcScreenSize

CALL lnit3DDisplay

'the graphic display is initialized, the
'graphic display parameters are stored in
'the data file, and the display colors
'are defined

28

I***

THIS NEXT SECTION OF CODE PLOTS OUT ALL THE PROJECTILE FACETS USING THE
•SUBTLE CONSTRUCTION LINE COLOR. LATER, THE VISIBLE FACETS WILL BE REDRAWN
'USING A COLOR THAT REPRESENTS THEIR ORIENTATION RELATIVE TO THE VIEWER.

'all the nose cone facets are plotted

'each transverse nose cone slice is
'considered

FOR ZSegment% = 0 TO NumNoseConeLongSeg% -1
'each radial facet within the transverse
'slice is considered

FOR CordSegment% = 0 TO NumNoseConeRadSeg% -1
'the first corner of each facet is plotted
'as a point

CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, 4),
YNoseConePos(ZSegment%, CordSegment%, 4),
ZNoseConePos(ZSegment%, 4), XSpace, YSpace, ZSpace)

CALL Ptot3DPoint(XSpace, YSpace, ZSpace, 2)
'lines are drawn connecting all the
'corners

FOR Corner0/«, = 1 TO 4
CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, Corner%),

YNoseConePos(ZSegment%, CordSegment%, Corner%),
ZNoseConePos(ZSegment%, Corner%), XSpace, YSpace,
ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, 2)
NEXT Corner%

NEXT CordSegment%
NEXT ZSegment% , _,

'all the body facets are plotted

'each transverse body slice is considered
FOR ZSegment% = 0 TO NumBodyLongSeg% -1

'each radial facet within the transverse
'slic6 is considGrsd

FOR CordSegment% = 0 TO NumBodyRadSeg% -1
'the first corner of each facet is plotted
'as a point

CALL TransCoordBS(XBodyPos(CordSegment%, 4 , YBodvPos(CordSegment%, 4),
ZBodyPos(ZSegment%, 4), XSpace,
YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 2)
'lines are drawn connecting all the
'corners

FOR Corner% = 1 TO 4
CALL TransCoordBS(XBodyPos(CordSegment%, Corner%),

YBodyPos(CordSegment%, Comer%),
ZBodyPos(ZSegment%, Comer%), XSpace,
YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, 2)
NEXT Corner%

NEXT CordSegment%
NEXT ZSegment%

'all the fin facets are plotted

'each fin is considered in turn
FOR FinNumber% = 0 TO NumFins% -1

'each transverse fin slice is considered
FOR LeadEdgeLongSegNumber% = 0 TO NumLeadEdgeLongSeg% +

NumNonLeadEdgeLongSeg% -1

'the side facets in each transverse

29

'slic6 3f6 considor&d
FOR FinRadSegNumber% = 0 TO NumFinRadSeg% -1

'both of the fin sides are considered
FOR SideNumber% = 1 TO 2

'the first facet corner is plotted as
'a point 'a point

iPos(FinNumber%, LeadEdgeLongSegNumber%,
iRadSegNumber%, SideNumber%, 4),

CALL TransCoordBS(XFin , r _
FinRadSegNumber%, SideNumber%, 4),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, 4),
ZFinPos(LeadEdgeLongSegNumber%, 4), XSpace, YSpace,
ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 2)
'lines are drawn connecting all the
'corners

FOR Corner% = 1 TO 4
CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber3/«,,

FinRadSebNumber%, SideNumber%, Corner3/«,),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%),
ZFinPos(LeadEdgeLongSegNumber%,
Corner3/©), XSpace, YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, 2)
NEXT Corner3/»

NEXT SideNumber%
NEXT FinRadSegNumber% ., j

'the leading edge facet is considered

the first facet corner is plotted as
'a point

CALL TransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 4),
YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber3/«,, 4),
ZFinEdgePos(LeadEdgeLongSegNumber%, 4), XSpace,
YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 2)
'lines are drawn connecting all the
'corners

FOR Corner3/«, = 1 TO 4 „ ». ^ ^
CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,

Corner%), YFinEdgePos(FinNumber%,
LeadEdgeLongSegNumber%, Comer%),
ZFinEdgePos(LeadEdgeLongSegNumber%, Corner3/«,), XSpace,
YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, 2)
NEXT Corner3/«,

NEXT LeadEdgeLongSegNumber%
NEXT FinNumber% , J

'all the aftbody facets are plotted

'each transverse aftbody slice is
'considered

FOR ZSegment% = 0 TO NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1
'the afterbody region between each pair
'of adjacent tins is coi ; considered

FOR FinNumber3/«, = 0 TO NumFins% -1
'each afterbody radial facet is considered

FOR AftBodyRadSegNumber% = 0 TO NumAftBodyRadSegPerFin% -1
'the first facet corner is plotted as
'a point

CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 4),
YAftBodyPos(FinNumber%, AftBodyRadSegNumber3/«,, 4),
ZAftBodyPos(ZSegment%, 4), XSpace, YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 2)
'lines are drawn connecting all the

30

'corners
FOR Corner% = 1 TO 4

CALLTransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,
Corner%), YAttBodyPos(FinNumber%,
AftBodyRadSegNumber%, Corner%),
ZAftBodyPos(ZSegment%, Corner%),
XSpace, YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, 2)
NEXT Corner%

NEXT AftBodyRadSegNumber%
NEXT FinNumber%

NEXT ZSegment%

**
•EACH PROJECTILE FACET IS RECONSIDERED TO DETERMINE WHETHER IT IS IN A
'POSITION THAT IS VISIBLE TO THE VIEWER. THOSE FACETS THAT ARE VISIBLE ARE
•REDRAWN USING A COLOR THAT REPRESENTS THE FACETS ORIENTATION WITH RESPECT
TO THE VIEWER. FACETS WITH A NORMAL VECTOR THAT POINTS DIRECTLY TOWARD THE
•VIEWER ARE REPLOTTED USING WHITE LINES. FACETS WITH A NORMAL VECTOR THAT IS
•PERPENDICULAR TO THE VIEWERS DIRECTION ARE REPLOTTED USING BLACK LINES.
•FACETS WITH NORMAL VECTORS THAT FALL BETWEEN THESE TWO EXTREMES ARE
•REPLOTTED USING AN APPROPRIATE SHADE OF GRAY. THIS COLORING SCHEME YIELDS AN
•IMAGE OF THE PROJECTILE THAT MIMICS THE CASE WHERE THE ILLUMINATING LIGHT
•SOURCE IS BETWEEN THE VIEWER'S EYES.
i***

'all the nose cone facets are reconsidered

'each transverse nose cone slice is
'considered

FOR ZSegment% = 0 TO NumNoseConeLongSeg% -1
'each radial facet within the transverse
'slice is considered

FOR CordSegment% = 0 TO NumNoseConeRadSeg% -1
'the visibility of a facet to the viewer
'is determined by considering the dot
'product between the facet's outwardly
■pointed normal vector and the normal
'vector pointing towards the viewer, if
this dot product is positive, then the
•facet is visible, it is assumed that no
'other portion of the projectile will
'ever block a nose cone facet.

NormalDotProduct = XNoseConeNormal(CordSegment%) * XViewNormal +
YNoseConeNormal(CordSegment%) * YViewNormal +
ZNoseConeNormal * ZViewNormal

IF (NormalDotProduct > 0) THEN
'a corner of each visible facet is
•plotted as a point

CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, 4),
YNoseConePos(ZSegment%, CordSegment%, 4),
ZNoseConePos(ZSegment%, 4), XSpace, YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
'lines are drawn connecting the facer
'corners

FOR Corner% = 1 TO 4
CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, Corner%],

YNoseConePos(ZSegment%, CordSegment%, Corner%),
ZNoseConePos(ZSegment%, Corner0/,), XSpace, YSpace,
ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
'facet corner positions are saved for
'later transfer to the data storage file

X(Corner%) = XSpace
Y(Corner%) = YSpace

31

Z(Corner%) = ZSpace
NEXTCorner% t ,_ L

'the temperature of the facet is
'determined by interpolation

CALL AssignNoseTemp(ZSegment%, NoseTemp)
'data is transferred to the storage file

CALL LoadDataFilefNose", X(), Y(), Z(), NormalDotProduct, .
NoseConeArea(ZSegment%), NoseTemp, NoseEmis)

END IF
NEXT CordSegment%

NEXT ZSegment%

FOR ZSegment% = 0 TO NumBodyLongSeg% -1

'all the body facets are reconsidered

'each trasverse body slice is considered

'each radial facet within the transverse
'slice is considered

FOR CordSegment% = 0 TO NumBodyRadSeg% -1
'the visibility of a facet to the viewer
'is determined by considering the dot
'product between the facets outwardly
'pointed normal vector and the unit
'vector pointing towards the viewer, if
'this dot product is positive, then the
'facet is visible, it is assumed that no
'other portion of the projectile will
'ever block a body facet.

NormalDotProduct = XBodyNormal(CordSegment%) * XViewNormal +
YBodyNormal(CordSegment%) * YViewNormal +
ZBodyNormal * ZViewNormal

IF (NormalDotProduct > 0) THEN „.,.,,.
'the first comer of each visible facet
'is plotted as a point

CALL TransCoordBS(XBodyPos(CordSegment%, 4), YBodyPos(CordSegment%, 4),
ZBodyPos(ZSegment%, 4), XSpace, YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
'lines are drawn connecting all the
'facet corners

FOR Corner% = 1 TO 4
CALL TransCoordBS(XBodyPos(CordSegment%, Comer%),

YBodyPos(CordSegment%, Corner%), ZBodyPos(ZSegment%,
Corner%), XSpace, YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
facet corner positions are saved for
'later transfer to the storage data file

X(Comer%) = XSpace
Y(Comer%) = YSpace
Z(Corner%) = ZSpace
NEXT Corner%

the temperature of the facet is
'determined by interpolation

CALL AssignBodyTemp(ZSegment%, BodyTemp)
'data is transferred to the storage file

CALL LoadDataFile("Body", X(), Y(), Z(), NormalDotProduct, BodyArea, BodyTemp,
BodyEmis)

END IF
NEXT CordSegment%

NEXT ZSegment%

FOR FinNumber% = 0 TO NumFins% -1

'all the fin facets are reconsidered

'each fin is considered in turn

'the x and y components in the body
'coordinate system are calculated for
'a unit vector lying in the plane of the
'fin that is normal to the longitudinal

32

'axis
FinUnitRadXVector = -COS(2 * 3.14159 * FinNumber% / NumFins%)
FinUnitRadYVector = SIN(2 * 3.14159 * FinNumber% / NumFins%)

'this unit vector is then dotted with the
'unit vector pointing towards the viewer,
'the resulting cosine value is a measure
'of the degree to which the fin points
toward the viewer

FinUnitCOSValue = FinUnitRadXVector * XViewNormal + FinUnitRadYVector *
YViewNormal

'each transverse fin slice is considered
FOR LeadEdgeLongSegNumber% = 0 TO Numl_eadEdgeLongSeg% +

NumNonl_eadEdgel_ongSeg% -1
'the side facets in each transverse
'slice are considered

FOR FinRadSegNumber% = 0 TO NumFinRadSeg% -1
'both of the fin sides are considered

FOR SideNumber% = 1 TO 2
'the visibility of a facet to the viewer
'is determined by first considering the
'dot product between the facet's outward
'pointed normal vector and the normal
'vector pointed towards the viewer, if
'this dot product is positive then the
'facet may be visible to the viewer.

NormalDotProduct = XFinSideNormal(FinNumber%, SideNumber%) * XViewNormal
YFinSideNormal(FinNumber%, SideNumber%) * YViewNormal +
ZFinSideNormal * ZViewNormal

IF (NormalDotProduct > 0) THEN
'the areal midpoint position of the facet
'is calculated in the body coordinate
'system

CALL CalcFinSideMidPoint(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, XMid, YMid, ZMid)

'this midpoint position is then
'transformed to the space coordinate
"system

CALL TransCoordBS(XMid, YMid, ZMid, XSpace, YSpace, ZSpace)
'the graphic display plot color at this
'midpoint pixel position is saved

OldColor = POINT(ZSpace * Scale, YSpace * Scale)
'the midpoint pixel position is replotted
'in white to denote the facet under
'consideration

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 15)
'all other projectile facets are
'considered to determine whether any of
'them will block the viewer's view of
'this facet

CALL EclipsefXSpace, YSpace, ZSpace, FinNumber%, FinUnitCOSValue, "Fin",
Ans%)

'if the facet is not blocked by any other
'facet then the subroutine returns with
'the variable Ans% equal to 1

IF(Ans% = 1)THEN
'the midpoint position pixel is replotted
'in its original graphic display color

CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
'a corner of the facet is plotted as a
'point

CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, 4),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, 4),
ZFinPos(LeadEdgeLongSegNumber%, 4), XSpace, YSpace,
ZSpace)

33

CALL Plot3DPoint(XSpace, YSpace, ZSpace, NormalDotProduct 12 + 3)
'lines are drawn between the facet corners
'using a display color that indicates the
'facets orientation with respect to the
'viewer

FOR Comer% = 1 TO 4
CALLTransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,

FinRadSegNumber%, SideNumber%, Corner%),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%), ZFinPos(
LeadEdgetongSegNumber%, Corner%), XSpace, YSpace,
ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, NormalDotProduct 12 + 3)
"the facet corner positions are saved for
'later transfer to the data storage file

X(Corner%) = XSpace
Y Comer%) = YSpace
Z(Corner%) = ZSpace
NEXT Corner% , u Ä

Ihe temperature of the facet is
'determined by interpolation and the
'data is transferred to the storage file

IF (LeadEdgeLongSegNumber% < NumLeadEdgeLongSeg%) THEN
CALLAssignFinSideTemp(LeadEdgeLongSegNumber%, FinRadSegNumber%,

FinTemp)
CALL LoadDataFilefFin ", X(), Y(), ZQ, NormalDotProduct

FinLeadSideArea(LeadEdgeLongSegNumber%), FinTemp,

ELSE
CALLAssignFinSideTemp(LeadEdgeLongSegNumber%, FinRadSegNumber%,

FinTemp)
CALL LoadDataFilefFin ", XQ, Y(), ZQ, NormalDotProduct,

FinNonLeadSideArea, FinTemp, FinEmis)
END IF ,._,.. u, , M K 'if the view of the facet is blocked by

'another facet the midpoint position
'pixel is simple returned to its
'original color

ELSE Mjrs , 4
CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
END IF

END IF
NEXT SideNumber%

NEXT FinRadSegNumber%
Ihe fin edge for this longitudinal fin
'slice is considered

'the dot product of the edge facets
'outward normal vector with the unit
'vector towards the viewer is calculated

IF (LeadEdgeLongSegNumber% < NumLeadEdgeLongSeg%) THEN
NormalDotProduct = XFinLeadEdgeNormal(FinNumber%) * XViewNormal +

YFinLeadEdgeNormal(FinNumber%) * YViewNormal +
ZFinLeadEdgeNormal * ZViewNormal

ELSE
NormalDotProduct = XFinNonLeadEdgeNormal(FinNumber%) * XViewNormal +

YFinNonLeadEdgeNormal(FinNumber%) YViewNormal
END IF

'this edge facet can only be visible if
Ihe dot product is positive

IF (NormalDotProduct > 0) THEN
'the midpoint of the edge facet is
'calculated in body coordinates

CALL CalcFinEdgeMidPoint(FinNumber%, LeadEdgeLongSegNumber%, XMid, YMid,
ZMid)

34

'this midpoint position is transformed to
'space coordinates

CALL TransCoordBS(XMid, YMid, ZMid, XSpace, YSpace, ZSpace)
'the original color of this midpoint
'pixel position is saved

OldColor = POINT(ZSpace * Scale, YSpace * Scale)
'the midpoint position pixel is replotted
'in white to denote which facet is under
'consideration

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 15)
'all other projectile facets are
'considered to determine whether any of
'them will block the viewer's view of
'this fäCGt

CALL EclipsefXSpace, YSpace, ZSpace, FinNumber%, FinUnitCOSValue, "Fin", Ans%)
'if the facet is not blocked by any other
'facet then the subroutine returns with
'the variable Ans% equal to 1

IF(Ans%=1)THEN
the midpoint position pixel is replotted
'in the original color

CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
'a facet corner position is plotted as
'a point

CALL TransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 4),
YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 4),
ZFinEdgePos(LeadEdgeLongSegNumber%, 4), XSpace,
YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
'lines are drawn between the facet comers
'using a display color that indicates the
'facets orientation with respect to the
'viewer

FOR Corner% = 1 TO 4 «*,...«,
CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,

Corner%), YFinEdgePos(FinNumber%,
LeadEdgeLongSegNumber%, Corner%),
ZFinEdgePos(LeadEdgeLongSegNumber%, Corner%), XSpace,
YSpace, ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, NormalDotProduct 12 + 3)
'the facet corner positions are saved for
'later transfer to the data storage file

X(Corner%) = XSpace
Y Corner%) = YSpace
Z(Corner%) = ZSpace
NEXT Corner0/«,

'the temperature of the facet is
'determined by interpolation and the
'data is transferred to the storage file

IF (LeadEdgeLongSegNumber% < NumLeadEdgeLongSeg%) THEN
CALL AssignFmEdgeTemp(LeadEdgeLongSegNumber%, FinTemp)
CALL LoadDataFile("Fin ", X(), Y(), Z(), NormalDotProduct, FinLeadEdgeArea,

FinTemp, FinEmis)
ELSE
CALL AssignFinEdgeTemp(LeadEdgeLongSegNumber%, FinTemp)
CALL LoadDataFilefFin ", X(), Y(), Z(), NormalDotProduct, FinNonLeadEdgeArea,

FinTemp, FinEmis)
END IF

'if the view of the facet is blocked by
'another facet the midpoint position
'pixel is simple returned to its
'original color

ELSE
CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
END IF

END IF

35

NEXT LeadEdgeLongSegNumber%
NEXT FinNumber% ._, _,

'all the aftbody facets are reconsidered

'each transverse aftbody slice is
'considered

FOR ZSegment% = 0 TO NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1
'the aftbody area between each pair of
'adjacent fins is considered

FOR FinNumber% = 0 TO NumFins% -1
the radial facets within each transverse
'aftbody slice are considered

FOR AftBodyRadSegNumber% = 0 TO NumAftBodyRadSegPerFin% -1
'the visibility of a facet to the viewer
'is determined by first considering the
'dot product between the facets outwardly
■pointed normal vector and the unit
'vector pointing towards the viewer, if
this dot product is positive, then the
lacet may be visible provided that it is
'not blocked by another facet.

NormalDotProduct = XAftBodyNormal(FinNumber%, AftBodyRadSegNumber%) *
XViewNormal + YAftBodyNormal(FinNumber%,
AftBodyRadSegNumber%) * YViewNormal

IF (NormalDotProduct > 0) THEN
the areal midpoint position of the
'aftbody facet is calculated in the
'body coordinate system

CALL CalcAftBodyMidPoint(ZSegment%, FinNumber%, AftBodyRadSegNumber%,
XMid, YMid, ZMid)

this midpoint position is tranformed to
the space coordinate system

CALL TransCoordBS(XMid, YMid, ZMid, XSpace, YSpace, ZSpace)
the original color of the midpoint
'position pixel is determined and saved

OldColor = POINT(ZSpace * Scale, YSpace * Scale)
the aftbody midpoint position is replotted
'in white to denote which facet is under
'consideration

CALL Plot3DPoint(XSpace, YSpace, ZSpace, 15)
'all other projectile facets are
'considered to determine whether any of
them will block the viewer's view of
'this fäc&t

CALL Eclipse(XSpace, YSpace, ZSpace, FinNumber0/«,, FinUnitCOSValue, "AftBody",
Ans%)

'if the facet is not blocked by any other
tacet then the subroutine returns with
the variable Ans% equal to 1

IF (Ans% = 1) THEN
the aftbody facet midpoint position
'pixel is returned to its original color

CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
'a facet corner position is plotted as
'a point

CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 4),
YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 4),
ZAftBodyPos(ZSegment%, 4), XSpace, YSpace, ZSpace)

CALL Plot3DPoint(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
'lines are drawn between the facet comers
'using a display color that indicates the
'facets orientation with respect to the
'viewer

FOR Corner% = 1 TO 4
CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,

Comer%), YAftBodyPos(FinNumber%,

36

AftBodyRadSegNumber%, Corner%),
ZAftBodyPos(ZSegment%, Corner%), XSpace, YSpace,
ZSpace)

CALL Plot3DLine(XSpace, YSpace, ZSpace, NormalDotProduct * 12 + 3)
the facet corner positions are saved for
'later transfer to the data storage file

X(Corner%) = XSpace
Y Corner%) = YSpace
Z(Comer%) = ZSpace
NEXT Corner% _ _ _, s ±.

'the temperature of the aftbody facet is
'determined by interpolation

CALL AssignAftBodyTemp(ZSegment%, AftBodyTemp)
'data is transferred to the storage file

CALL LoadDataFilefAft", XQ, Y(), Z(), NormalDotProduct, AftBodyArea,
AftBodyTemp, AftBodyEmis)

'if the aftbody facet is blocked by
'another facet then the midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(XSpace, YSpace, ZSpace, OldColor)
END IF

END IF
NEXT AftBodyRadSegNumber%

NEXT FinNumber%
NEXT ZSegment%

'the data storage file is terminated
'and closed

PRINT#1, "END"
CLOSE #1

'a completion statement is output to the
'monitor screen

LOCATE 27, 2
PRINT "DONE"

'a user terminated do loop is executed to
'allow the graphic image to emain on the
'monitor screen for possible graphic
'capture

DO
LOOP WHILE INKEY$ = ""

REM $STATIC
SUB AssignAftBodyTemp (ZSegment%, AftBodyTemp)
,***

THIS SUBROUTINE DETERMINES AFTBODY TEMPERATURES BY LINEARLY INTERPOLATING
•BETWEEN THE PREVIOUSLY DEFINED TEMPERATURES AT THE FRONT AND REAR OF THE
•AFTBODY SECTION

Mk**

SHARED NumLeadEdgeLongSeg%, NumNonLeadEdgeLongSeg%
SHARED AftBodyForwTemp, AftBodyRearTemp

AftBodyTemp = AftBodyForwTemp + (AftBodyRearTemp - AftBodyForwTemp) * (ZSegment% /
(NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1))

END SUB

SUB AssignBodyTemp (ZSegment%, BodyTemp)

37

»***********+********************** ***

THIS SUBROUTINE DETERMINES BODY TEMPERATURES BY LINEARLY INTERPOLATING
'BETWEEN THE PREVIOUSLY DEFINED TEMPERATURES AT THE FRONT AND REAR OF THE
'BODY SECTION

*********************************** ***

SHARED NumBodyLongSeg%, BodyForwTemp, BodyRearTemp

BodyTemp = BodyRearTemp + (BodyForwTemp - BodyRearTemp) * ((NumBodyLongSeg% -1)
ZSegment%) / (NumBodyLongSeg% -1)

END SUB

SUB AssignFinEdgeTemp (LeadEdgeLongSegNumber%, FinTemp)

,♦**

THIS SUBROUTINE DETERMINES FIN EDGE TEMPERATURES BY LINEARLY INTERPOLATING
BETWEEN THE PREVIOUSLY DEFINED TEMPERATURES AT THE INNERMOST AND
OUTERMOST
'FIN EDGE POSITIONS

i** ***

SHARED NumLeadEdgeLongSeg%, NumNonLeadEdgeLongSeg%, FinOuterWRTInnerTemp
SHARED FinLeadTemp, FinTrailTemp

IF (LeadEdgeLongSegNumber% < NumLeadEdgeLongSeg%) THEN
FinTemp = FinLeadTemp + ((LeadEdgeLongSegNumber%) / (NumLeadEdgeLongSeg% -1))

FinOuterWRTInnerTemp
ELSE
FinTemp = FinLeadTemp + FinOuterWRTInnerTemp
END IF

END SUB

SUB AssignFinSideTemp (LeadEdgeLongSegNumber%, FinRadSegNumber%, FinTemp)

i*************************************** **

THIS SUBROUTINE DETERMINES FIN SIDE TEMPERATURES BY LINEARLY INTERPOLATING
'BETWEEN THE PREVIOUSLY DEFINED TEMPERATURES AT THE INNERMOST, OUTERMOST,
•LEADING AND TRAILING EDGE POSITIONS

,*******«************************** ***

SHARED NumLeadEdgeLong_Seg%, NumNonLeadEdgeLongSeg%, NumFinRadSeg%
SHARED FinOuterWRTInnerTemp, FinLeadTemp, FinTrailTemp

FinTemp = FinLeadTemp - ((LeadEdgeLongSegNumber%) / (NumLeadEdgeLongSeg% +
NumNonLeadEdgeLongSeg% -1)) * (FinLeadTemp - FinTrailTemp)

FinTemp = FinTemp + ((FinRadSegNumber%) / (NumFinRadSeg% -1)) *
FinOuterWRTInnerTemp

END SUB

SUB AssignNoseTemp (ZSegment%, NoseTemp)

38

********************* ************************************+*************+***************^

THIS SUBROUTINE DETERMINES NOSE CONE TEMPERATURES BY LINEARLY INTERPOLATJNG
'BETWEEN THE PREVIOUSLY DEFINED TEMPERATURES AT THE FRONT AND REAR OF THE
'NOSE CONE

SHARED NumNoseConeLongSeg%, NoseForwTemp, NoseRearTemp

NoseTemp = NoseRearTemp + (NoseForwTemp - NoseRearTemp) * „„,..„
(((NumNoseConeLongSeg% -1) - ZSegment%) / (NumNoseConeLongSeg% -1))

END SUB

SUB CalcAftBodyMidPoint (ZSegment%, FinNumber%, AftBodyRadSegNumber%, XMid, YMid,
ZMid)

THIS SUBROUTINE CALCULATED THE MIDPOINT POSITION OF AN AFTBODY FACET BY
'AVERAGING THE POSITIONS OF THE FACET'S FOUR CORNERS
,** ***

SHARED XAftBodyPosO, YAftBodyPos(), ZAftBodyPos()

XMid = 0
YMid = 0
ZMid = 0

FOR Comer% = 1 TO 4 „....,«
XMid = XMid + XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, Corner% / 4
YMid = YMid + YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, Corner%) / 4
ZMid = ZMid + ZAftBodyPos(ZSegment%, Comer%) / 4
NEXT Corner0/»

END SUB

SUB CalcAftBodyPos
I***

THIS SUBROUTINE CALCULATES THE POSITIONS OF THE CORNERS, THE AREA, AND THE
'COMPONENTS OF THE NORMAL VECTOR FOR THE AFTERBODY FACETS.
,***

SHARED NumFins%, ThickFin, DeltaZFin, NumLeadEdgeLongSeg%, RadBody
SHARED NumNonLeadEdgeLongSeg%, NumAftBodyRadSegPerFin%, LengthNoseCone
SHARED LengthBody, ZAftBodyPosQ, XAftBodyPosf), YAftBodyPos()
SHARED ZAftBodyNormal, XAttBodyNormal(), YAftBodyNormaf(), AftBodyArea

'the constant cord length of each facet is
'calculated taking into account the
thickness of the fins

ChordPerAftBodyRadSeg = (2 * 3.14159 * RadBody - NumFins% * ThickFin) / (NumFins% *
NumAftBody RadSeg PerFin%)

'the constant area of the afterbody facets
'is calculated

AftBodyArea = ChordPerAftBodyRadSeg * DeltaZFin
'each afterbody facet is considered
'starting at the junction between the body
'and the afterbody and working rearward to
'the projectile end

FOR ZSegment% = 0 TO NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1

39

'ZPositionl is the more forward facet
'longitudinal position

ZPositionl = LengthNoseCone + LengthBody + ZSegment% * DeltaZFin
'ZPosition2 is the more rearward facet
'longitudinal position

ZPosition2 = LengthNoseCone + LengthBody + (ZSegment% + 1) * DeltaZFin
'considering the afterbody area between
'each fin in turn

FOR FinNumber% = 0 TO NumFins% -1
'the radially onented facets are
'considered for each longitudinal slice
"of each afterbody area

FOR AftBodyRadSegNumber% = 0 TO NumAftBodyRadSegPerFin% -1
'the radial angle from the x axis to the
'afterbody corner positions is calculated

AngleAftBodyRadSegl = (ThickFin * (FinNumber% + .5) + FinNumber% *
ChordPerAftBodyRadSeg * NumAftBodyRadSegPerFin% +
ChordPerAftBodyRadSeg * AftBodyRadSegNumber%) / RadBody

AngleAftBodyRadSeg2 = (ThickFin * (FinNumber% + .5) + FinNumber% *
ChordPerAftBodyRadSeg * NumAftBodyRadSegPerFin% +
ChordPerAftBodyRadSeg * (AftBodyRadSegNumber% + 1)) /
RadBody , , __,

'the corner positions are calculated
ZAftBodyPos(ZSegment%, 1) = ZPositionl
XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 1) = -RadBody

COS(AngleAftBodyRadSeg2)
YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 1) = RadBody *

SIN(AngleAftBodyRadSeg2)
ZAftBodyPos(ZSegment%, 2) = ZPosition2
XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 2) = -RadBody

COS(AngleAftBodyRadSeg2)
YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 2) = RadBody *

SIN(AngleAftBodyRadSeg2)
ZAftBodyPos(ZSegment%, 3) = ZPosition2
XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 3) = -RadBody

COS(AngleAftBodyRadSeg1)
YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 3) = RadBody *

SIN(AngleAftBodyRadSeg1)
ZAftBodyPos(ZSegment%, 4) = ZPositionl
XAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 4) = -RadBody

COS(AngleAftBodyRadSeg1)
YAftBodyPos(FinNumber%, AftBodyRadSegNumber%, 4) = RadBody *

SIN(Ang!eAftBodyRadSeg1)
the components of the normal vectors
'are calculated

ZAftBodyNormal = 0
XAftBodyNormal(FinNumber%, AftBodyRadSegNumber%) = „_.„_.„.„.«

-COS((AngleAftBodyRadSeg1 + AngleAftBodyRadSeg2) / 2)
YAftBodyNormal(FinNumber%, AftBodyRadSegNumber%) =

SIN((AngleAftBodyRadSeg1 + AngleAftBodyRadSeg2) / 2)
NEXT AftBodyRadSegNumber%

NEXT FinNumber%
NEXT ZSegment%

END SUB

SUB CalcBodyPos

40

THIS SUBROUTINE CALCULATES THE POSITIONS OF THE CORNERS, THE AREA, AND THE
COMPONENTS OF THE NORMAL VECTOR FOR THE BODY FACETS.

NOTE THAT SYMMETRY ALLOWS THE FOLLOWING SIMPLIFICATIONS:

* THE CORD LENGTH OF ALL THE FACETS WILL BE THE SAME

* THE Z COMPONENT OF ALL THE FACET BODY NORMALS WILL BE ZERO

* ALL THE FACET AREAS WILL BE THE SAME
p***

SHARED LengthBody, DeltaZBody, RadBody, NumBodyRadSeg%
SHARED ZBodyPosO, XBodyPosQ, YBodyPos(), BodyArea
SHARED ZBodyNormal, XBodyNormal(), YBodyNormal(), NumBodyLongSeg%
SHARED LengthNoseCone ^ j, ^ t .,

'constant chord length of each facet is
*C3lCUl3tfid

MaxBodyChordLength = 2 * 3.14159 * RadBody / NumBodyRadSeg%
'for the body facets the value of theta

TanTheta = 0
CosTheta = 1
SinTheta = 0

FOR ZSegment% = 0 TO NumBodyLongSeg% -1

ZPositionl = ZSegment% * DeltaZBody

ZPosition2 = (ZSegment% + 1) * DeltaZBody

'is zero.

'each body facet is considered starting at
'the junction between the nose and the
'body and working back towards the
'junction with the aft body

'ZPositionl is the more forward facet
'longitudinal position

'ZPosition2 is the more rearward facet
'longitudinal position

'the radially oriented facets are
'considered for each longitudinal slice

FOR CordSegment% = 0 TO NumBodyRadSeg% -1 . . _.
'the facet corner positions are calculated

ZBodyPos(ZSegment%, 1) = ZPositionl + LengthNoseCone
XBodyPos(CordSegment%, 1) = -RadBody * COS(2 * 3.14159 * (CordSegment% + .5) /

NumBodyRadSeg%)
YBodyPos(CordSegment%, 1) = RadBody * SfN(2 * 3.14159 * (CordSegment% + .5) /

NumBodyRadSeg%)
ZBodyPos(ZSegment%, 2) = ZPosition2 + LengthNoseCone
XBodyPos(CordSegment%, 2) = -RadBody * COS(2 * 3.14159 * (CordSegment% + .5) /

NumBodyRadSeg%)
YBodyPos(CordSegment%, 2) = RadBody * SIN(2 * 3.14159 * (CordSegment% + .5) /

NumBodyRadSeg%)
ZBodyPos(ZSegment%, 3) = ZPosition2 + LengthNoseCone
XBodyPos(CordSegment%, 3) = -RadBody * COS(2 * 3.14159 * (CordSegment% - .5) /

NumBodyRadSeg%)
YBodyPos(CordSegment%, 3 = RadBody * SIN(2 * 3.14159 * (CordSegment% - .5) /

NumBodyRadSeg%)
ZBodyPos(ZSegment%, 4) = ZPositionl + LengthNoseCone
XBodyPos(CordSegment%, 4) = -RadBody * COS(2 * 3.14159 * (CordSegment% - .5) /

NumBodyRadSeg%)
YBodyPos(CordSegment%, 4 = RadBody * SIN(2 * 3.14159 * (CordSegment% - .5) /

NumBodyRadSeg%)
'the facet area is calculated

BodyArea = MaxBodyChordLength * DeltaZBody
the facet normal vector components are
'calculated

41

ZBodyNormal = 0
XBodyNormal(CordSegment%) = -CosTheta * COS(2 * 3.14159 * CordSegment% /

NumBodyRadSeg%)
YBodyNormal(CordSegment%) = CosTheta * SIN(2 * 3.14159 * CordSegment% /

NumBodyRadSeg%)
NEXT CordSegment%

NEXT ZSegment%

END SUB

SUB CalcBoxExtremes

THIS SUBROUTINE DETERMINES THE EXTREME PROJECTILE POSITIONS SO THAT A
■PROPERLY SIZED GRAPHICS SCREEN CAN BE INITIALIZED

M>**

SHARED ZNoseConePos]), XNoseConePosQ, YNoseConePosQ, NumNoseConeLongSeg%
SHARED NumNoseConeRadSeg%, ZBoxMin, ZBoxMax, XBoxMin, XBoxMax, YBoxMin
SHARED YBoxMax, ZBodyPosO, XBodyPos(), YBodyPosQ „ n w_ ,__, n n
SHARED NumBodyLongSeg%, NumBodyRadSeg%, ZFinEdgePos(), YFinEdgePos()
SHARED XFinEdgePosQ, NumFins%, NumLeadEdgeLongSeg%
SHARED NumNonLeadEdgeLongSeg%

ZBoxMin -1E+10
ZBoxMax --1E+10
XBoxMin = 1E+10
XBoxMax --1E+10
YBoxMin = 1E+10
YBoxMax --1E+10

'checking all the nose cone positions
FOR ZSegment% = 0 TO NumNoseConeLongSeg% -1

FOR CordSegment% = 0 TO NumNoseConeRadSeg% -1
FOR Corner% = 1 TO 4

IF (ZNoseConePos(ZSegment%, Corner%) > ZBoxMax) THEN ZBoxMax =
ZNoseConePos(ZSegment%, Corner%)

IF (ZNoseConePos(ZSegment%, Corner%) < ZBoxMin) THEN ZBoxMin =
ZNoseConePos(ZSegment%, Comer%)

IF (XNoseConePos(ZSegment%, CordSegment%, Corner%) > XBoxMax) THEN
XBoxMax = XNoseConePos(ZSegment%, CordSegment%,
Corner%)

IF (XNoseConePos(ZSegment%, CordSegment%, Comer%) < XBoxMin) THEN
XBoxMin = XNoseConePos(ZSegment%, CordSegment%, Corner%)

IF (YNoseConePos(ZSegment%, CordSegment%, Corner*/«,) > YBoxMax) THEN
YBoxMax = YNoseConePos(ZSegment%, CordSegment%, Corner%)

IF (YNoseConePos(ZSegment%, CordSegment%, Corner%) < YBoxMin) THEN
YBoxMin = YNoseConePos(ZSegment%, CordSegment%, Corner%)

NEXT Corner%
NEXT CordSegment%

NEXT ZSegment%
'checking all the body positions

FOR ZSegment% = 0 TO NumBodyLongSeg% -1
FOR CordSegment% = 0 TO NumBodyRadSeg% -1

FOR Corner«/» = 1 TO 4
IF (ZBodyPos(ZSegment%, Corner%) > ZBoxMax) THEN ZBoxMax =

ZBodyPos(ZSegment%, Corner%)
IF (ZBodyPos(ZSegment%, Corner%) < ZBoxMin) THEN ZBoxMin =

ZBodyPos(ZSegment%, Corner%)
IF (XBodyPos(CordSegment%, Comer%) > XBoxMax) THEN XBoxMax =

XBodyPos(CordSegment%, Corner%)
IF (XBodyPos(CordSegment%, Corner%) < XBoxMin) THEN XBoxMin =

XBodyPos(CordSegment%, Comer%)
IF (YBodyPos(CordSegment%, Corner%) > YBoxMax) THEN YBoxMax =

YBodyPos(CordSegment%, Comer%)

42

IF (YBodyPos(CordSegment%, Corner%) < YBoxMin) THEN YBoxMin =
YBodyPos(CordSegment%, Corner%)

NEXT Corner*/«,
NEXT CordSegment%

NEXT ZSegment%
'checking all the fin positions

FOR FinNumber% = 0 TO NumFins% -1 ^ ,
FOR ZSegment% = 0 TO NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1

FOR Corner% = 1 TO 4
IF (ZFinEdgePos(ZSegment%, Corner%) > ZBoxMax) THEN ZBoxMax =

ZFinEdgePos(ZSegment%, Corner%)
IF (ZFinEdgePos(ZSegment%, Corner%) < ZBoxMin) THEN ZBoxMin =

ZFinEdgePos(ZSegment%, Corner%)
IF (XFinEdgePos(FinNumber%, ZSegment%, Comer%) > XBoxMax) THEN XBoxMax =

XFinEdgePos(FinNumber%, ZSegment%, Corner%)
IF (XFinEdgePos(FinNumber%, ZSegment%, Corner%) < XBoxMin) THEN XBoxMin =

XFinEdgePos(FinNumber%, ZSegment%, Corner%)
IF (YFinEdgePos(FinNumber%, ZSegment%, Corner%) > YBoxMax) THEN YBoxMax =

YFinEdgePos(FinNumber%, ZSegment%, Comer%)
IF (YFinEdgePos(FinNumber%, ZSegment%, Corner%) < YBoxMin) THEN YBoxMin =

YFinEdgePos(FinNumber%, ZSegment%, Corner%)
NEXT Comer%

NEXT ZSegment%
NEXT FinNumber%

'it is assumed that an aftbody position
'will never be at an extreme location

END SUB

SUB CalcEulerElem

THIS SUBROUTINE CALCULATES THE MATRIX ELEMENTS THAT ARE NECESSARY TO
TRANSFORM BETWEEN PROJECTILE AND SPACE COORDINATES

,♦♦»***»**

SHARED EulerQ, E()

EM.1
E1.2
E1.3
E 2, 1,
E 2, 2
E 2, 3
E 3, 1,
E 3, 2

= COS(Euler(1)) * COS(Euler(3)) - SIN(Euler(1)) * COS(Euler(2)) * SIN(Euler(3)>
= -COS(Euler(1) * SIN(Euler(3)) - SIN(Euler(1)) * COS(Euler(2)) * COS(Euler(3))
= SIN(Euler(1))'SIN(Euler(2))
= SIN Eulerl * COS(Euler(3)) + COS(Euler(1)) * COS(Euler(2)) * SIN(Euler(3»
= -SIN(Euler(1) * SIN(Euler(3)) + COS(Euler(1)) * COS(Euler(2)) * COS(Euler(3))
= -COS(Euler(1)) * SIN(Euler(2))
= SIN(Euler(2)) ' SIN(EuIer(3))
= SIN[Euler 2) * COS(Euler(3))
= COS(Euler(2)) E(3, 3

END SUB

SUB CalcFinEdgeMidPoint (FinNumber%, LeadEdgeLongSegNumber%, XMid, YMid, ZMid)

THIS SUBROUTINE CALCULATED THE MIDPOINT POSITIONS OF FIN EDGE FACETS BY
'AVERAGING THE POSITIONS OF THE FACET'S FOUR CORNERS

SHARED XFinEdgePosO, YFinEdgePos(), ZFinEdgePos()

XMid = 0
YMid = 0
ZMid = 0
FOR Corner% = 1 TO 4

43

XMid = XMid + XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, Corner%) / 4
YMid = YMid + YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, Corner%) / 4
ZMid = ZMid + ZFinEdgePos(LeadEdgeLongSegNumber%, Corner%) / 4
NEXT Corner%

END SUB

SUB CalcFinPos
I************************* **

THIS SUBROUTINE CALCULATES THE POSITIONS OF THE CORNERS, THE AREA, AND THE
COMPONENTS OF THE NORMAL VECTOR FOR THE FIN FACETS.

NOTE THAT SYMMETRY ALLOWS THE FOLLOWING SIMPLIFICATIONS:

* ALL THE LEADING EDGE FACETS WILL HAVE THE SAME Z COMPONENT OF THE
NORMAL VECTOR

* ALL THE LEADING EDGE FACETS HAVE THE SAME AREA

* ALL THE NON-LEADING EDGE FACETS HAVE A NORMAL VECTOR Z COMPONENT
OF ZERO

* ALL THE NON-LEADING EDGE FACETS HAVE THE SAME AREA

* ALL THE SIDE FACETS HAVE A NORMAL VECTOR Z COMPONENT OF ZERO

* ALL THE SIDE FACETS ON ONE SIDE OF A GIVEN FIN HAVE THE SAME NORMAL
VECTOR X AND Y COMPONENTS

* ALL THE SIDE FACETS IN THE NON-LEADING EDGE AREA OF THE FIN HAVE THE
SAME AREA

SHARED NumFins%, ThickFin, LengthLeadEdgeFin, DeltaZFin
SHARED NumLeadEdgeLongSeg%, HeightFin, NumNonLeadEdgeLongSeg%
SHARED DeltaRadFin, NumFinRadSeg%, LengthNoseCone, LengthBody, RadBody
SHARED ZFinEdgePosQ, YFinEdg_ePos{), XFinEdgePos()
SHARED ZFinPosO, YFinPos(), XFinPos()
SHARED ZFinLeadEdgeNormal, XFinLeadEdgeNormal(), YFinLeadEdgeNormalQ
SHARED ZFinNonLeadEdgeNormal, XFinNoriLeadEdgeNormalQ, YFinNonLead£dgeNormal()
SHARED ZFinSideNormal, XFinSideNormalQ, YFinSideNormal{), FiriLeadEdgeArea
SHARED FinNonLeadEdgeArea, FinLeadSideArea(), FinNonLeadSideArea

'the angle that the fin leading edge makes
'with the projectile body is considered

FinLeadEdgeSIN = HeightFin / SQR((LengthLeadEdgeFin A 2) + (HeightFin A 2))
FinLeadEdgeCOS = LengthLeadEdgeFin / SQR((LengthLeadEdgeFin A 2) + (HeightFin A 2))

'the constant area of the fin leading edge
'facets is calculated

FinLeadEdgeArea = ThickFin * DeltaZFin / FinLeadEdgeCOS
'the constant area of the fin non-leading

FinNonLeadEdgeArea = ThickFin * DeltaZFin

FinNonLeadSideArea = DeltaZFin * DeltaRadFin

FOR FinNumber% = 0 TO NumFins% -1

'edge edge facets is calculated

'the constant area of the fin side facets
'that are not associated with a leading
'edge longitudinal position is calculated

'each fin is considered in turn

'the angle is considered between the x
'axis and a vector that is normal to the
'projectile center line and is in the
'plane of the fin under consideration

FinRadSIN = SIN(2 * 3.14159 * FinNumber% / NumFins%)

44

FinRadCOS = COS(2 * 3.14159 * FinNumber% / NumFins%)
'the components of the fins extension
'away from the central plane of the fin
"due to the fin's thickness are calculated

FinThickSINFactor = (ThickFin / 2) * SIN(2 * 3.14159 * FinNumber% / NumFins%)
FinThickCOSFactor = (ThickFin / 2) * COS(2 * 3.14159 * FinNumber% / NumFins%)

'the components of the normals of the fin
'side facets are calculated taking into
'account the fact that side facets can
"be paired by which "side" of the fin they
'are located on.

ZFinSideNormal = 0
XFinSideNormal(FinNumber%, 1) = FinRadSIN
XFinSideNormal FinNumber%, 2 = -FinRadSIN
YFinSideNormal FinNumber%, 1 = FinRadCOS
YFinSideNormal FinNumber%, 2) = -FinRadCOS

'starting at the front of the fin the
'corner positions, orientations, and areas
'are calculated for the longitudinal
'positions corresponding to the leading
'edge

FOR LeadEdgeLongSegNumber% = 0 TO NumLeadEdgeLongSeg% -1
'the leading edge facets are considered
'for this leading edge longitudinal
'position

ZPositionl = LengthNoseCone + LengthBody + LeadEdgeLongSegNumber% * DeltaZFin
ZPosition2 = LengthNoseCone + LengthBody + (LeadEdgeLongSegNumber% + 1) *

DeltaZFin
'the facet corner positions are calculated

ZFinEdgePos(LeadEdgeLongSegNumber%, 1) = ZPositionl
XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 1) = -(RadBody + HeightFin

LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%)
FinRadCOS + FinThickSINFactor

YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 1) = (RadBody + HeightFin *
LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%) *
FinRadSIN + FinThickCOSFactor

ZFinEdgePos(LeadEdgeLongSegNumber%, 2) = ZPosition2
XFinEdgePos(FinNumber%,leadEdgeLongSegNumber%, 2) = -(RadBody + HeightFin *

(LeadEdgeLongSegNumber% + 1) / NumLeadEdgeLongSeg%)
FinRadCOS + FinThickSINFactor .

YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 2) = (RadBody + HeightFin
(LeadEdgeLongSegNumber% + 1) / NumLeadEdgeLongSeg%)

FinRadSIN + FinThickCOSFactor
ZFinEdgePos(LeadEdgeLongSegNumber%, 3) = ZPosition2
XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 3) = -(RadBody + HeightFin

(LeadEdgeLongSegNumber% + 1) / NumLeadEdgeLongSeg%)
FinRadCOS - FinThickSINFactor .

YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 3) = (RadBody + HeightFin
(LeadEdgeLongSegNumber% + 1) / NumLeadEdgeLongSeg%)

FinRadSIN - FinThickCOSFactor
ZFinEdgePos(LeadEdgeLongSegNumber%, 4) = ZPositionl
XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 4) = -(RadBody + HeightFin

LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%) *
FinRadCOS-FinThickSINFactor

YFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%, 4) = (RadBody + HeightFin *
LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%) *
FinRadSIN - FinThickCOSFactor

'the facet normal vector components are
'calculated

ZFinLeadEdgeNormal = -FinLeadEdgeSIN
XFinLeadEdgeNormal(FinNumber%) = -FinLeadEdgeCOS * FinRadCOS
YFinLeadEdgeNormal(FinNumber%) = FinLeadEdgeCOS * FinRadSIN

'the facet area is calculated
FinLeadSideArea(LeadEdgeLongSegNumber%) = .5 * (LeadEdgeLongSegNumber% + 1) *

DeltaZFin * HeightFin * ((LeadEdgeLongSegNumber% + 1) /
NumLeadEdgeLongSeg%) - (.5 * (LeadEdgeLongSegNumber%) *

45

DeltaZFin * HeightFin * ((LeadEdgeLongSegNumber%) /
NumLeadEdgeLongSeg%))

the side facets are considered for this
'leading edge longitudinal position

FOR LeadEdgeRadSegNumber% = 0 TO NumFinRadSeg% -1
'the facet comer positions are calculated

ZFinPos(LeadEdgeLongSegNumber%, 1) = ZPositionl
XFinPos]FinNumber%,leadEdgeLongSegNumber%, LeadEdgeRadSegNumber%,

+ HeightFin * (LeadEdgeLongSegNumber% /
NumLeadEdgelongSeg%) * (LeadEdgeRadSegNumber% /
NumFinRadSeg») * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,1) =
(RadBody + HeightFin * (LeadEdgel_ongSegNumber% / NumLeadEdgeLongSeg%)
4 (LeadEdgeRadSegNumber% / NumFinRadSeg%)) * FinRadSIN + (LeadEdgeRadSegNumber%
:inThickCO~- FinThickCOSFactor

= ZPositionl
LeadEdgeRadSegNumber%, 1,2) =

ZFinPos(LeadEdgeLongSegNumber%, 2) = ZPosition
XFinPoslFinNumber%, LeadEdgeLongSegNumber%,

+ HeightFin * (LeadEdgeLongSegNumber% / -(RadBody + HeightFin * (LeadEdgeLongSegNumber% /
NumLeadEdgetongSeg%) * ((LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%)) * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,2) =
(RadBody + HeightFin * (LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%)
4 ((LeadEdgeRadSegNumber% + 1) / NumFinRadSeg%)) * FinRadSIN +
FinThickCOSFactor

ZFinPos(LeadEdgeLongSegNumber%, 3) = ZPosition2
XFinPoslFinNurnber%,leadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,3) =

-(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /
NumLeadEdgeLongSeg%) * ((LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg») * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,3) =
(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /

NumLeadEdgelongSeg%) * ((LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%)) * FinRadSIN + FinThickCOSFactor

ZFinPos(LeadEdgeLongSegNumber%, 4) = ZPosition2
XFinPos]FinNumber%,leadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,4) =

-(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /
NumLeadEdgeLongSeg%) * (LeadEdaeRadSegNumber% /
NumFinRadSeg») * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 1,4) =
(RadBody + HeightFin * ((LeadEdgeLongSegNurriberVo + 1) /

NumLeadEdgelongSeg°/o) * (LeadEdgeRadSegNumber% /
NumFinRadSeg») * FinRadSIN + FinThickCOSFactor

XFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2,1) =
-(RadBody + HeightFin ~

NumLeaataqeLo

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2,1) =
(RadBody + HeightFin * (LeadEdgeLongSegNumber% / NumLeadEdgeLongSeg%)
4 (LeadEdgeRadSegNumber% / NumFinRadSeg%)) * FinRadSIN -
FinThickCOSFactor

XFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 2) = s(l
-(RadBody + HeightFin * (LeadEdgeLongSegNumber°7o /

NumLeadEdgelongSeg%) * ((LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%)) * FinRadCOS - FinThickSINF)) * FinRadCOS - FinThickSINFactor

~ Number%, LeadEdgeRadSegNumber%, 2, 2) = YFinPos{FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 2) =
(RadBody + HeightFin * (LeadEdgel_ongSegNumber% / NumLeadEdgeLongSeg%)
4 ((LeadEdgeRadSegNumber% + 1) / NumFinRadSeg%)) * FinRadSIN -
FinThickCOSFactor

XFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 3) =
-(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /

NumLeadEdgeLongSeg%) * (]LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg») * FinRadCOS - FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 3) =
(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /

NumLeadEdgelongSeg%) * ((LeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%)) * FinRadSIN - FinThickCOSFactor

46

XFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 4)
-(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /

NumLeadEdgeLongSeg%) * (LeadEdgeRadSegNumber% /
NumFinRadSeg0/«,)) * FinRadCOS - FinThickSINFactor

YFinPos(FinNumber%, LeadEdgeLongSegNumber%, LeadEdgeRadSegNumber%, 2, 4)
(RadBody + HeightFin * ((LeadEdgeLongSegNumber% + 1) /

NumLeadEdgetongSeg%) * (LeadEdgeRadSegNumber% /
NumFinRadSeg%)) * FinRadSIN - FinThickCOSFactor

NEXT LeadEdgeRadSegNumber%
NEXT LeadEdgeLongSegNumber% , ,.

'starting at the front of the non-leading
'edge portion of the fin the corner
'positions, orientations, and areas are
'calculated for the longitudinal positions
'corresponding to the non-leading edge.

FOR NonLeadEdgeLongSegNumber% = NumLeadEdgeLongSeg% TO
(NumLeadEdgeLongSeg% + NumNonl_eadEdgeLongSeg% -1)

the non-leading edge facets are
'considered for this non-leading edge
'longitudinal position

ZPositionl = LengthNoseCone + LengthBody + NonLeadEdgel_ongSegNumber% *
DeltaZFin

ZPosition2 = LengthNoseCone + LengthBody + (NonLeadEdgeLongSegNumber% + 1) *
DeltaZFin

'the facet corner positions are calculated
ZFinEdgePos(NonLeadEdgeLongSegNumber%, 1) = ZPositionl
XFinEdgePos(FinNumber%, NonLeadEdgeLongSegNumber%, 1) = -(RadBody + HeightFin)

FinRadCOS + FinThickSINFactor jp, _,
YFinEdgePosiFinNumber%, NonLeadEdgeLongSegNumber%, 1) = (RadBody + HeightFin)

FinRadSIN + FinThickCOSFactor
ZFinEdgePos(NonLeadEdgeLongSegNumber%, 2) = ZPosition2
XFinEdgePos(FinNumber%, NonleadEdgeLongSegNumber%, 2) = -(RadBody + HeightFin)

FinRadCOS + FinThickSINFactor ...,-..
YFinEdg_ePosJFinNumber%, NonLeadEdgeLongSegNumber%, 2) = (RadBody + HeightFin)

FinRadSIN + FinThickCOSFactor
ZFinEdgePos(NonLeadEdgeLongSegNumber%, 3) = ZPosition2__.
XFinEdgePos(FinNumber%, NonLeadEdgeLongSegNumber%, 3) = -(RadBody + HeightFin)

FinRadCOS - FinThickSINFactor „ Jr, ^ _.,-. v YFinEdgePos(FinNumber%, NonLeadEdgeLongSegNumber%, 3) = (RadBody + HeightFin)
FinRadSIN - FinThickCOSFactor

ZFinEdgePos(NonLeadEdgeLongSegNumber%, 4) = ZPositionl
XFinEdgePos(FinNumber%, NonLeadEdgeLongSegNumber%, 4) = -(RadBody + HeightFin)

FinRadCOS - FinThickSINFactor ,„,.„_, _„-. % YFinEdgePos(FinNumber%, NonLeadEdgeLongSegNumber%, 4) = (RadBody + HeightFin)
FinRadSIN - FinThickCOSFactor

"the facet normal vector components
'are calculated

ZFinNonLeadEdgeNormal = 0
XFinNonLeadEdgeNormal(FinNumber%) = -FinRadCOS
YFinNonLeadEdgeNormal(FinNumber%) = FinRadSIN

'the side facets are considered for this
'non-leading edge longitudinal position

FOR NonLeadEdgeRadSegNumber% = 0 TO NumFinRadSeg% -1
'the facet corner positions are calculated

je RadSegNumber%,
1,1) = -(RadBody + HeightFin * NonLeadEdgeHaabegNumber% /
NumFinRadSeg%) * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
1.1) = (RadBody + HeightFin * NonLeadEdaeRadSegNumber% I
NumFinRadSeg%) * FinRadSIN + FinThickCOSFactor

ZFinPos(NonLeadEdgeLongSegNumber%, 2) = ZPositionl
XFinPos(FinNumber%, NonleadEdgeLonaSegNumber%, NonLeadEdgeRadSegNumber%,

1.2) = -(RadBody + HeightFin * (NonLeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%) * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,

47

1.2) = (RadBody + HeightFin * (NonLeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%) * FinRadSIN + FinThickCOSFactor

ZFinPos(NonLeadEdgeLongSegNumber%, 3) = ZPosition2
XFinPos(FinNumber%, NonLeadEdgeLongSegNumberyo, NonLeadEdgeRadSegNumber%,

1.3) = -(RadBody + HeightFin * (Nonl_eadEdgeRadSegNumber% + 1) /
NumFinRadSeg%) * FinRadCOS + FinThickSINFactor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdg
1,3) = (RadBody + HeightFin * (NonLeadEdgeRadSegNt
NumFinRadSeg%) * FinRadSIN + FinThickCOSFactor

ZFinPos(NonLeadEdgeLongSegNumber%, 4) = ZPosition2

jeRadSegNumber%,
igeRadSegNumber% +1) /
:Of"

XFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
1,4) = -(RadBody + HeightFin * NonLeadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadCOS + FinThickSIN Factor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, Nonl_eadEdgeRadSegNumber%,
1,4) = (RadBody + HeightFin * NonLeadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadSIN + FinThickCOSFactor

XFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
2,1) = -(RadBody + HeightFin * NonLeadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadCOS - FinThickSIN Factor

YFinPos(FinNumber%, Nonl_eadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
2,1) = (RadBody + HeightFin * NonLeadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadSIN - FinThickCOSFactor

XFinPos(FinNumber%, Nonl_eadEdgeLonqSegNumber%, NonLeadEdgeRadSegNumber%,
2, 2) = -(RadBody + HeightFin * (NonLeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%) * FinRadCOS - FinThickSINFactor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
2, 2) = (RadBody + HeightFin * (NonLeadEdgeRadSegNumber% + 1) /
NumFinRadSeg%) * FinRadSIN - FinThickCOSFactor

XFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSegNumber%,
2, 4) = -(RadBody + HeightFin * NonLeadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadCOS - FinThickSINFactor

YFinPos(FinNumber%, NonLeadEdgeLongSegNumber%, NonLeadEdgeRadSeg
2, 4) = (RadBody + HeightFin * Nonl_eadEdgeRadSegNumber% /
NumFinRadSeg%) * FinRadSIN - FinThickCOSFactor

iNumber%,

NEXT NonLeadEdgeRadSegNumber%
NEXT NonLeadEdgeLongSegNumber%

NEXT FinNumber%

END SUB

SUB CalcFinSideMidPoint (FinNumber%, LeadEdgeLongSegNumber%, FinRadSegNumber%,
SideNumber%, XMid, YMid, ZMid)
,********♦**»** ***

THIS SUBROUTINE CALCULATED THE MIDPOINT POSITIONS OF FIN SIDE FACETS BY
•AVERAGING THE POSITIONS OF THE FACETS FOUR CORNERS
.***

SHARED XFinPosO, YFinPos(), ZFinPos()

XMid = 0
YMid = 0
ZMid = 0

FOR Corner% = 1 TO 4 jo
XMid = XMid + XFinPos(FinNumber%, LeadEdgeLongSegNumber%, FinRadSegNumber%,

SideNumber%, Corner%) / 4
YMid = YMid + YFinPos(FinNumber%, LeadEdgeLongSegNumber%, FinRadSegNumber%,

48

SideNumber%, Corner%) / 4
ZMid = ZMid + ZFinPos(LeadEdgeLongSegNumber%, Corner%) / 4
NEXT Comer%

END SUB

SUB CalcNoseConePos
i**«^

THIS SUBROUTINE CALCULATES THE POSITIONS OF THE CORNERS, THE AREA, AND THE
•COMPONENTS OF THE NORMAL VECTOR FOR THE NOSE CONE FACETS.

'NOTE THAT SYMMETRY ALLOWS THE FOLLOWING SIMPLIFICATION:

' * THE Z COMPONENT OF ALL THE FACET NORMAL VECTORS WILL BE THE SAME

SHARED LengthNoseCone, DeltaZNoseCone, NumNoseConeLongSeg%, RadNoseCpne
SHARED NumNoseConeRadSeg%, ZNoseConePos(), XNoseConePos(), YNoseConePos()
SHARED NoseConeArea(), ZNoseConeNormäl, XNoseConeNormal()
SHARED YNoseConeNormalO j. ,,..,.

'the radial segment cord is calculated at
'the base (or largest diameter) of the
'nose cone

MaxNoseConeChordLength = 2 * 3.14159 * RadNoseCone / NumNoseConeRadSeg%
'theta is the angle between the center
'line of the projectile and the surface
'of the nose cone

TanTheta = RadNoseCone / LengthNoseCone '
CosTheta = LengthNoseCone / SQR((RadNoseCone A 2) + (LengthNoseCone A 2))
SinTheta = RadNoseCone / SQR((RadNoseCone A 2) + (LengthNoseCone A 2))

'each nose cone facet is considered
'starting at the tip and working towards
"the base

FOR ZSegment% = 0 TO NumNoseConeLongSeg% -1
'ZPositionl is the more forward facet
'longitudinal position

ZPositionl = ZSegment% * DeltaZNoseCone
'ZPosition2 is the more rearward facet
'longitudinal position

ZPosition2 = (ZSegment% + 1) * DeltaZNoseCone
'the radially oriented facets are
'considered for each longitudinal slice

FOR CordSegment% = 0 TO NumNoseConeRadSeg% -1
'the facet corner positions are calculated

ZNoseConePos(ZSegment%, 1) = ZPositionl .. .,»«e,„.
XNoseConePos(ZSegment%, CordSegment%, 1) = -ZPositionl TanTheta COS(2

3.14159^ (CordSegment% + .5) / NumNoseConeRadSeg%)
YNoseConePos(ZSegment%, CordSegment%, 1) = ZPositionl * TanTheta * SINJ2 * , %

3.14159^ (CordSegment% + .5) / NumNoseConeRadSeg%)
ZNoseConePos(ZSegment%, 2) = ZPosrtion2

3%)
CordSegrrient%, 2} = ZPosition2 * TanTheta * SIN(2 *

3.14159^ (CordSegment% + .5) / NumNoseConeRadSeg%)
ZNoseConePos(ZSegment%, 3) = ZPosition2 ««„« *
XNoseConePos(ZSegment%, CordSegment%, 3) = -ZPosition2 TanTheta COS(2

3.14159^ (CordSegment% - .5) / NumNoseConeRadSeg%)
YNoseConePos(ZSegment%, CordSegment%, 3) = ZPosition2 * TanTheta * SIN(2 *

3.14159 "* (CordSegment% - .5) / NumNoseConeRadSeg%)
ZNoseConePos(ZSegment%, 4) = ZPositionl
XNoseConePos(ZSegment%, CordSegment%, 4) = -ZPositionl * TanTheta COSte

3.14159^ (CordSegment% - .5) / NumNoseConeRadSeg%)
YNoseConePos(ZSegment%, CordSegment%, 4) = ZPositionl * TanTheta * SIN(2 *

49

3.14159 * (CordSegment% - .5) / NumNoseConeRadSeg%)
'the facet areas are calculated

NoseConeArea(ZSegment%) = MaxNoseConeChordLength * ((ZPositionl + ZPosition2) /
2) * DeltaZNoseCone / (LengthNoseCone * CosTheta)

the facet normal vector components are
'calculated

ZNoseConeNormal = -SinTheta
XNoseConeNormal(CordSegment%) = -CosTheta * COS(2 * 3.14159 CordSegment% /

NumNoseConeRadSeg%)
YNoseConeNormal(CordSegment%) = CosTheta * SIN(2 * 3.14159 * CordSegment% /

NumNoseConeRadSeg%)
NEXT CordSegment%

NEXT ZSegment%

END SUB

SUB CalcScreenSize
i** ***

THIS SUBROUTINE CALCULATES AN APPROPRIATE SCALE FOR THE GRAPHICS DISPLAY
'WINDOW. IT OPERATES BY FIRST TRANSFORMING THE PREVIOUSLY DETERMINED
'PROJECTILE EXTREME POSITIONS FROM BODY TO SPACE COORDINATES. CALCULATIONS
'ARE THEN PERFORMED TO DETERMINE WHETHER THE GRAPHIC IMAGE SIZE IS

'BY THE SIZE OF THE GRAPHIC WINDOW IN THE HORIZONTAL OR VERTICAL DIRECTION.
'AN APPROPRIATE SCALE FACTOR IS THEN COMPUTED.
*********** ***

SHARED XBoxMin, XBoxMax, YBoxMin, YBoxMax, ZBoxMin, ZBoxMax, Scale
SHARED Controls, ZSpaceMin, ZSpaceMax, XSpaceMin, XSpaceMax, YSpaceMin
SHARED YSpaceMax, ScreenWidth, ScreenHeight

DIM ZM(2), YM(2), XM(2)
'projectile extreme position values are
'transferred to array variables to
'facilitate computation.

ZM(1) = ZBoxMin
ZM 2) = ZBoxMax
YM(1) = YBoxMin
YM 2 = YBoxMax
XM 1 = XBoxMin
XM(2) = XBoxMax

ZSpaceMin = 9999
ZSpaceMax = -9999

YSpaceMin = 9999
YSpaceMax = -9999

XSpaceMin = 9999
XSpaceMax = -9999 . ,_ L __,

'extreme projectile positions in the body
'coordinate system are transformed to
'the viewer, or space, coordinate system.

FOR K% = 1 TO 2
FOR J% = 1 TO 2

FOR l% = 1 TO 2
CALL TransCoordBS(XM(l%), YM(J%), ZM(K%), XSpace, YSpace, ZSpace)
IF (XSpace > XSpaceMax) THEN XSpaceMax = XSpace
IF XSpace < XSpaceMin) THEN XSpaceMin = XSpace
IF (YSpace > YSpaceMax) THEN YSpaceMax = YSpace
IF (YSpace < YSpaceMin) THEN YSpaceMin = YSpace
IF (ZSpace > ZSpaceMax) THEN ZSpaceMax = ZSpace
IF (ZSpace < ZSpaceMin) THEN ZSpaceMin = ZSpace

50

NEXT 1%
NEXT J%

NEXTK% .,„«.. Ihe ratio of the space frame extreme
'positions in the z and y directions are
'compared to the ratio of the graphic
'screen's dimensions in the horizontal
'and vertical directions to determine the
'more restrictive dimension, a graphic
"scale factor is then calculated.

IF (ABS(ZSpaceMax - ZSpaceMin) / ScreenWidth < ABS(YSpaceMax - YSpaceMin) /
v v ScreenHeight) THEN
Scale = ScreenHeight / ABS(YSpaceMax -YSpaceMin)
Controls = "Y"
END IF

IF (ABS(ZSpaceMax - ZSpaceMin) / ScreenWidth >= ABS(YSpaceMax - YSpaceMin) /
v v ScreenHeight) THEN
Scale = ScreenWidth / ABS(ZSpaceMax - ZSpaceMin)
Controls - "Z"
END IF

END SUB

SUB Eclipse (XTest, YTest, ZTest, CurrentFinNumber%, FinUnitCOSValue, Type$, Ans%)

THIS SUBROUTINE DETERMINES WHETHER THE VIEW OF A GIVEN FACET WILL BE BLOCKED
BY ANY OTHER FACET. A NUMBER OF SYMMETRY BASED ASSUMPTIONS ARE USED TO
SIMPLIFY THIS PROCEDURE.

1) THE UNIT NORMAL VECTOR OF ALL THE FACETS CHECKED BY THIS ROUTINE MAKE
AN ANGLE WITH THE UNIT VECTOR TOWARDS THE VIEWER THAT HAS A POSITIVE
COSINE

2) NOSE CONE AND BODY FACETS DO NOT REQUIRE THIS TYPE OF TESTING

3) THE NOSE CONE AND BODY FACETS ARE ALWAYS CLOSER TO THE VIEWER THAN
THE FIN FACETS

4) THE NOSE CONE, BODY, AND AFTBODY WILL NEVER BLOCK A FACET ON A FIN FOR
WHICH THE UNIT VECTOR THAT IS IN THE PLANE OF THE FIN AND PERPENDICULAR
TO THE LONGITUDINAL BODY AXIS MAKES AN ANGLE WITH THE UNIT VECTOR
TOWARDS THE VIEWER THAT HAS A POSITIVE COSINE

5) THE NOSE CONE AND BODY WILL NEVER BLOCK AN AFTBODY FACET

6) A FACET OF A GIVEN FIN WILL NEVER BE BLOCKED BY ANOTHER FACET IN THAT
FIN

7) AN AFTBODY FACET CAN ONLY BE BLOCKED BY A FACET ON A FIN FOR WHICH THE
DOT PRODUCT BETWEEN THE UNIT VECTOR THAT IS IN THE PLANE OF THE FIN AND
PERPENDICULAR TO THE LONGITUDINAL BODY AXIS AND THE UNIT VECTOR TOWARD
THE VIEWER HAS A NON-NEGATIVE VALUE

8) A FACET ON A FIN CAN ONLY BE BLOCKED BY A FACET ON ANOTHER FIN FOR WHICH
THE DOT PRODUCT BETWEEN THE UNIT VECTOR THAT IS IN THE PLANE OF THE FIN
AND PERPENDICULAR TO THE LONGITUDINAL BODY AXIS AND THE UNIT VECTOR
TOWARDS THE VIEWER HAS A VALUE CLOSER TO ONE.

9) AN AFTBODY FACET WILL NEVER BE BLOCKED BY ANOTHER AFTBODY FACET

10) AN AFTBODY FACET WILL NEVER BLOCK A FIN FACET ON A FIN FOR WHICH THE
DOT PRODUCT BETWEEN THE UNIT VECTOR THAT IS IN THE PLANE OF THE FIN AND
PERPENDICULAR TO THE LONGITUDINAL BODY AXIS AND THE UNIT VECTOR TOWARD

51

' THE VIEWER HAS A NON-NEGATIVE VALUE
i***

SHARED NumNoseConeLongSeg%, NumNoseConeRadSeg%, XNoseConePos()
SHARED YNoseConePos(), ZNoseConePosQ, XNoseConeNormal(), YNoseConeNormal()
SHARED ZNoseConeNormal, XBodyNormal(), YBodyNormalQ, ZBodyNormal
SHARED NumBodyLongSeg%, NumBodyRadSeg%, NumFinRadSeg%
SHARED XBodyPosJ), YBodyPos(), ZBodyPos(), NumFins%
SHARED NumLeadEdgeLongSeg%, NumNonLeadEdgeLonaSeg%
SHARED XFinLeadEdgeNormalO, XViewNormal, YFinLeadEdgeNormal()
SHARED YViewNormal, ZFinLeadEdgeNormal, ZViewNormal
SHARED XFinNonLeadEdgeNormalO, YFinNonLeadEdgeNormal()
SHARED ZFinNonLeadEdgeNormal, XFinEdgePos(), YFinEdgePosQ, ZFinEdgePos()
SHARED XFinSideNormalf), YFinSideNormaT(), ZFinSideNormal
SHARED XFinPos(), YFinPosO, ZFinPos(), NumAftBodyRadSegPerFin%
SHARED XAftBodyPosO, YAftBodyPosO, ZAftBodyPosQ
SHARED XAftBodyNormal(), YAftBodyNormaI(), ZAftBodyNormal, Scale

'as each projectile facet is considered
'its position is denoted by a dot. the
'following parameters determine the
'appearance of this dot

NumBlinks% = 1
BlinkDuration = 1
NewColor=15 ,_._,_,

'initial state set to nonhidden condition
Ans% = 1

'simplification #4 is tested
IF ((FinUnitCOSValue > 0) AND (Type$ = "Fin")) THEN GOTO SkipNoseConeAndBody

'simplification #5 is tested

IF (Type$ = "AftBody") THEN GOTO SkipNoseConeAndBody
'checking for blocking by nose cone
'facets

'each nose cone transverse segment is
'considered

FOR ZSegment% = 0 TO NumNoseConeLongSeg% -1
'each radial facet within the transverse
'segment is considered

FOR CordSegment% = 0 TO NumNoseConeRadSeg% -1
'only those nose cone facets that have a
'normal vector that points "towards" the
'viewer are considered

NormalDotProduct = XNoseConeNormal(CordSegment%) * XViewNormal +
YNoseConeNormal(CordSegment%) * YViewNormal +
ZNoseConeNormal * ZViewNormal

IF (NormalDotProduct > 0) THEN
'the midpoint position of the nose cone
'facet under consideration is calculated

ZNow = 0
YNow = 0
FOR Corner0/., = 1 TO 4

CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, Corner%),
YNoseConePos(ZSegment%, CordSegment%, Comer%),
ZNoseConePos(ZSegment%, Corner%), XSpace, YSpace, ZSpace)

ZNow = ZNow + ZSpace / 4
YNow = YNow + YSpace / 4
NEXT Comer% ._, .

'the original color of the midpoint
'position pixel is determined and saved

OldColor = POINT(ZNow * Scale, YNow * Scale)
'the midpoint position pixel of the nose
'cone facet under consideration is flashed

FOR l% = 1 TO NumBlinks%

52

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
FOR T = 1 TO BlinkDuration: NEXT T
CALL Plot3DPoint(1, YNow, ZNow, NewColor)
FOR T = 1 TO BlinkDuration: NEXT T
NEXTI%

'the vertical extremes of the possible
'blocking nose cone facet are determined

YFacetMin = 9999
YFacetMax = -9999
FOR Corner0/., = 1 TO 4

CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, Comer%),
YNoseConePos(ZSegment%, CordSegment%, Corner%),
ZNoseConePos(ZSegment%, Corner%), XSpace, YSpace, ZSpace)

IF (YSpace > YFacetMax) THEN YFacetMax = YSpace
IF YSpace < YFacetMin) THEN YFacetMin = YSpace
NEXTCorner%

'the midpoint vertical position of the
facet that is being tested for blockage
'is compared to the vertical extremes of
'the potentially blocking nose cone facet,
'if the midpoint is contained within the
'range of the nose cone facet's extremes,
'then further testing will be performed
'that considers honzontal overlap, if
'not, then this nose cone facet can not
'be blocking.

IF ((YFacetMin < YTest) AND (YFacetMax > YTest)) THEN
the horizontal extremes of the possible
'blocking nose cone facet are determined

ZFacetMin = 9999
ZFacetMax = -9999
FOR Corner% = 1 TO 4

CALL TransCoordBS(XNoseConePos(ZSegment%, CordSegment%, Corner0/«,),
YNoseConePos(ZSegment%, CordSegment%, Corner%),
ZNoseConePos(ZSegment%, Corner%), XSpace, YSpace, ZSpace)

IF (ZSpace > ZFacetMax) THEN ZFacetMax = ZSpace
IF (ZSpace < ZFacetMin) THEN ZFacetMin = ZSpace
NEXTCorner%

the midpoint horizontal position of the
'facet that is being tested for blockage
'is compared to the horizontal extremes of
"the potentially blocking nose cone facet,
'if the midpoint is contained within the
'range of the nose cone facet's extremes,
'then it is concluded that the nose cone
'facet will block the facet being tested.

IF ((ZFacetMin < ZTest) AND (ZFacetMax > ZTest)) THEN
Ans% = 0
BEEP

'the nose cone facet midpoint position
"pixel is returned to its original color

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
GOTO Hidden

'if this nose cone facet is determined not
'to block the facet under consideration,
'then the nose cone facet's midpoint
'position pixel is simply returned to its
'original color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

'if this nose cone facet is determined not
'to block the facet under consideration,
'then the nose cone facet's midpoint
'position pixel is simply returned to its
'original color

53

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

END IF
NEXT CordSegment%

NEXT ZSegment% Li ,. ,_ ,. , t 'checking for blocking by body facets

'each body transverse segment is
'considered

FOR ZSegment% = 0 TO NumBodyLongSeg% -1 .._.._
'each radial facet within the transverse
'segment is considered

FOR CordSegment% = 0 TO NumBodyRadSeg% -1 ^ ^
'only those body facets that have a normal
'vector that points "towards" the viewer
'are considered

NormalDotProduct = XBodyNormal(CordSegment%) * XViewNormal +
YBodyNormal(CordSegment%) * YViewNormal +
ZBodyNormal * ZViewNormal

IF (NormalDotProduct > 0) THEN ,._.__,, .
'the midpoint position of the body facet
'under consideration is calculated

ZNow = 0
YNow = 0
FOR Corner% = 1 TO 4

CALL TransCoordBS(XBodyPos(CordSegment%, Corner%),
YBodyPos(CordSegment%, Corner%), ZBodyPos(ZSegmerrt%,
Corner%), XSpace, YSpace, ZSpace)

ZNow = ZNow + ZSpace / 4
YNow = YNow + YSpace / 4
NEXT Corner% , ,_ ._, . x 'the original color of the midpoint

'position pixel is determined and saved
OldColor = POINT(ZNow * Scale, YNow * Scale)

'the midpoint position pixel of the body
'facet under consideration is flashed

FOR l% = 1 TO NumBlinks%
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
FOR T = 1 TO BlinkDuration: NEXT T
CALL Plot3DPoint(1, YNow, ZNow, NewColor)
FOR T = 1 TO BlinkDuration: NEXT T
NEXTI%

'the vertical extremes of the possible
'blocking body facet are determined

YFacetMin = 9999
YFacetMax = -9999
FOR Corner% = 1 TO 4

CALL TransCoordBS(XBodyPos(CordSegment%, Comer%),
YBodyPos(CordSegment%, Corner0/«,), ZBodyPos(ZSegment%,
Corner%), XSpace, YSpace, ZSpace)

IF (YSpace > YFacetMax) THEN YFacetMax = YSpace
IF YSpace < YFacetMin) THEN YFacetMin = YSpace
NEXTCorner%

the midpoint vertical position of the
'facet that is being tested for blockage
'is compared to the vertical extremes of
'the potentially blocking body facet, if
'the midpoint is contained within the
'range of the body facet's extremes, then
'further testing will be performed that
'considers horizontal overlap, if
'not, then this body facet can not be
'blocking.

IF ((YFacetMin < YTest) AND (YFacetMax > YTest)) THEN
'the horizontal extremes of the possible

54

'blocking body facet are determined
ZFacetMin = 9999
ZFacetMax = -9999
FOR Corner% = 1 TO 4

CALL TransCoordBS(XBodyPos(CordSegment%, Comer%),
YBodyPosfCordSegment%, Corner%), ZBodyPos(ZSegment%,
Corner%), XSpace, YSpace, ZSpace)

IF (ZSpace > ZFacetMax) THEN ZFacetMax = ZSpace
IF ZSpace < ZFacetMin) THEN ZFacetMin = ZSpace
NEXTComer% . ^ .

'the midpoint horizontal position of the
'facet that is being tested for blockage
'is compared to the horizontal extremes of
the potentially blocking body facet, if
'the midpoint is contained within the
'range of the body facet's extremes, then
'it is concluded that the body facet will
'block the facet being tested

IF ((ZFacetMin < ZTest) AND (ZFacetMax > ZTest)) THEN
Ans% = 0
BEEP

'the body facet midpoint position pixel
'is returned to its original color

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
GOTO Hidden . _, . J .. 'if this body facet is determined not to

'block the facet under consideration,
'then the body facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF . _,

'if this body facet is determined not to
'block the facet under consideration,
'then the body facet's midpoint position
'pixel is simply returned to "its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

END IF
NEXT CordSegment%

NEXT ZSegment%

SkipNoseConeAndBody: ,_ ,. ,,_,,. u £. . , checking for blocking by fin facets

'each fin is considered
FOR FinNumber% = 0 TO NumFins% -1 . j

'simplification #6 is tested
IF ((FinNumber% = CurrentFinNumber%) AND (Type$ = "Fin")) THEN GOTO SkipFin

'the x and y components in the body
'coordinate system are determined for a
"unit vector in the fin under
'consideration that is normal to the
'longitudinal axis

TestFinUnitRadXVector = -COS(2 * 3.14159 * FinNumber% / NumFins%)
TestFinUnitRadYVector = SIN(2 * 3.14159 * FinNumber% / NumFins%)

'this unit vector is dotted with the unit
'vector pointing towards the viewer to
'determine whether the unit vector in the
'fin points towards or away from the
'viewer

TestFinUnitCOSValue = TestFinUnitRadXVector * XViewNormal + TestFinUnitRadYVector *

55

YViewNormal
'simplification #7 is tested

IF ((TestFinUnitCOSValue < 0) AND (Type$ = "AftBody")) THEN GOTO SkipFin
'simplification #8 is tested

IF ((TestFinUnitCOSValue < FinUnitCOSValue) AND (Type$ = "Fin")) THEN GOTO SkipFin
'each longitudinal segment of the fin is
'considered

FOR LeadEdgeLongSegNumber% = 0 TO Numl_eadEdgel_ongSeg% +
NumNonl_eadEdgeLongSeg% -1

'each radial segment of the longitudinal
'segment is considered

FOR FinRadSegNumber% = 0 TO NumFinRadSeg% -1
'both sides of the radial segment are
'considered

FOR SideNumber% = 1 TO 2
'only those fin facets that have a normal
'vector that points "towards" the viewer
'are considered

NormalDotProduct = XFinSideNormal(FinNumber%, SideNumber%) * XViewNormal
YFinSideNormal(FinNumber%, SideNumber%) * YViewNormal

IF (NormalDotProduct > 0) THEN
'the midpoint position of the fin facet
'under consideration is calculated

ZNow = 0
YNow = 0
FOR Corner% = 1 TO 4

CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Comer%),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%),
ZFinPos(LeadEdgeLongSegNumber%, Corner%), XSpace, YSpace,
ZSpace)

ZNow = ZNow + ZSpace / 4
YNow = YNow + YSpace / 4
NEXT Corner0/«

the original color of the midpoint
'position pixel is determined and saved

OldColor = POINT(ZNow * Scale, YNow * Scale)
'the midpoint position pixel of the fin
'facet under consideration is flashed

FOR l% = 1 TO NumBlinks%
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
FOR T = 1 TO BlinkDuration: NEXT T
CALL Plot3DPoint(1, YNow, ZNow, NewColor)
FOR T = 1 TO BlinkDuration: NEXT T
NEXTl%

'the farthest distance of the fin facet
'from the viewer is determined

XFacetMax = -9999
FOR Corner% = 1 TO 4

CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%),
YFinPos(FinNumber%, LeadEdgeLongSegNumbf
FinRadSegNumber%, SideNumber%, Comer%),
ZFinPos(LeadEdgeLongSegNumber%, Corner%), XSpace, YSpace,
ZSpace)

IF (XSpace > XFacetMax) THEN XFacetMax = XSpace
NEXT Comer%

'further testing continues only if the
'farthest distance of the fin facet from
'the viewer is less than the distance to
the projectile facet under consideration

IF (XFacetMax < XTest) THEN

YFacetMin = 9999

the vertical extremes of the possible
'blocking fin facet are determined

56

YFacetMax = -9999
FOR Corner% = 1 TO 4 n KI t M

CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSeaNumber%, SideNumber%, Corner%),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%), ZFinPos(
LeadEdgeLongSegNumber%, Corner%), XSpace, YSpace,
ZSpace)

IF (YSpace > YFacetMax) THEN YFacetMax = YSpace
IF YSpace < YFacetMin) THEN YFacetMin = YSpace
NEXTCorner%

'the midpoint vertical position of the
'facet that is being tested for blockage
'is compared to the vertical extremes of
'the potentially blocking fin facet, if
the midpoint is contained within the
'range of the fin facet's extremes, then
'further testing will be performed that
'considers horizontal overlap, if
'not, then this fin facet can not be
'blocking.

IF ((YFacetMin < YTest) AND (YFacetMax > YTest)) THEN
'the horizontal extremes of the possible
'blocking fin facet are determined

ZFacetMin = 9999
ZFacetMax = -9999
FOR Corner% = 1 TO 4 ^ ki' M

CALL TransCoordBS(XFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%),
YFinPos(FinNumber%, LeadEdgeLongSegNumber%,
FinRadSegNumber%, SideNumber%, Corner%), ZFinPos(
LeadEdgeLongSegNumber%, Corner%), XSpace, YSpace,
ZSpace)

IF (ZSpace > ZFacetMax) THEN ZFacetMax = ZSpace
IF (ZSpace < ZFacetMin) THEN ZFacetMin = ZSpace
NEXT Corner0/»

'the midpoint horizontal position of the
'facet that is being tested for blockage
'is compared to the horizontal extremes of
'the potentially blocking fin facet, if
'the midpoint is contained within the
'range of the fin facet's extremes, then
'it is concluded that the fin facet will
'block the facet being tested.

IF ((ZFacetMin < ZTest) AND (ZFacetMax > ZTest)) THEN
BEEP

'the fin facet midpoint position pixel
'is returned to its original color

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
Ans% = 0
GOTO Hidden

'if this fin facet is determined not to
'block the facet under consideration,
'then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

'if this fin facet is determined not to
"block the facet under consideration,
then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)

57

NormalDotProduct = XFinNonLeadEdgeNormal(FinNumber%) *
YFinNonLeadEdgeNormal(FinNumbei

END IF
'if this fin facet is determined not to
'block the facet under consideration,
then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

END IF
NEXT SideNumber%

NEXT FinRadSegNumber%
the leading edge of each longitudinal
'segment of the fin is considered

IF (LeadEdgeLongSegNumber% < NumLeadEdgeLongSeg%) THEN
NormalDotProduct = XFinLeadEdgeNormal(FinNumber%) * XViewNormal +

YFinLeadEdgeNormal(FinNumber%) * YViewNormal +
ZFinLeadEdgeNormal * ZViewNormal

ELSE
XViewNormal +

3er%) * YViewNormal
END IF

'only those fin facets that have a normal
'vector that points towards" the viewer
'are considered

IF (NormalDotProduct > 0) THEN
the midpoint position of the fin facet
'under consideration is calculated

ZNow = 0
YNow = 0
FOR Corner% = 1 TO 4

CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,
Comer%), YFinEdgePos(FinNumber%,
LeadEdgeLongSegNumber%, Corner%),
ZFinEdgePos(LeadEdgeLongSegNumber%, Corner%), XSpace,
YSpace, ZSpace)

ZNow = ZNow + ZSpace / 4
YNow = YNow + YSpace / 4
NEXT Corner3/»

the original color of the midpoint
'position pixel is determined and saved

OldColor = POINT(ZNow * Scale, YNow * Scale)
the midpoint position pixel of the fin
'facet under consideration is flashed

FOR l% = 1 TO NumBlinks%
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
FOR T = 1 TO BlinkDuration: NEXT T
CALL Plot3DPoint(1, YNow, ZNow, NewColor)
FOR T = 1 TO BlinkDuration: NEXT T
NEXT l%

the farthest distance of the fin facet
'from the viewer is determined

XFacetMax = -9999
FOR Corner% = 1 TO 4

CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,
Corner0/,), YFinEdgePos(FinNumber%,
LeadEdgeLongSegNumber%, Corner%),
ZFinEdgePos(IeadEdgeLongSegNumber%, Corner0/,), XSpace,
YSpace, ZSpace)

IF (XSpace > XFacetMax) THEN XFacetMax = XSpace
NEXT Corner3/,

'further testing continues only if the
'farthest distance of the fin facet from
the viewer is less than the distance to
the projectile facet under consideration

IF (XFacetMax < XTest) THEN

58

'the vertical extremes of the possible
"blocking fin facet are determined

YFacetMin = 9999
YFacetMax = -9999
FOR Corner0/,, = 1 TO 4 n Ki u M CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,

Corner%), YFinEdgePos(FinNumber%,
LeadEdgeLongSegNumber%, Corner%),
ZFinEdgePos(LeadEdgeLongSegNumber%, Corner%), XSpace,
YSpace, ZSpace)

IF (YSpace > YFacetMax) THEN YFacetMax = YSpace
IF YSpace < YFacetMin) THEN YFacetMin = YSpace
NEXT Comer%

"the midpoint vertical position of the
'facet that is being tested for blockage
'is compared to the vertical extremes of
'the potentially blocking fin facet, if
'the midpoint is contained within the
'range of the fin facet's extremes, then
•further testing will be performed that
'considers horizontal overlap, if
'not, then this fin facet can not be
'blocking.

IF ((YFacetMin < YTest) AND (YFacetMax > YTest)) THEN
'the horizontal extremes of the possible
'blocking fin facet are determined

ZFacetMin = 9999
ZFacetMax = -9999
FOR Corner% = 1 TO 4 „ ». ._ ^,

CALLTransCoordBS(XFinEdgePos(FinNumber%, LeadEdgeLongSegNumber%,
Corner%), YFinEdgePos(FinNumber%,

Corner%), XSpace,
YSpace" ZSpace)

IF (ZSpace > ZFacetMax) THEN ZFacetMax = ZSpace
IF ZSpace < ZFacetMin) THEN ZFacetMin = ZSpace
NEXT Corner%

'the midpoint horizontal position of the
'facet that is being tested for blockage
'is compared to the horizontal extremes of
'the potentially blocking fin facet, if
'the midpoint is contained within the
'range of the fin facet's extremes, then
'it is concluded that the fin facet will
'block the facet being tested.

IF ((ZFacetMin < ZTest) AND (ZFacetMax > ZTest)) THEN
BEEP . ,

the fin facet midpoint position pixel
'is returned to its original color

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
Ans% = 0
GOTO Hidden

'if this fin facet is determined not to
'block the facet under consideration,
'then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

'if this fin facet is determined not to
'block the facet under consideration,
'then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE

59

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF . _,

'if this fin facet is determined not to
'block the facet under consideration,
'then the fin facet's midpoint position
'pixel is simply returned to its original
'color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

END IF
NEXT LeadEdgeLongSegNumber%

SkipFin:
NEXT FinNumber% u ,. t ui ,. . „.. , .

'checking for blocking by aftbody facets
'checking for simplification #9

IF (Type$ = "AftBody") THEN GOTO SkipAftBody
'checking for simplification #10

IF ((FinUnitCOSValue > 0) AND (Type$ = "Fin")) THEN GOTO SkipAftBody
'each transverse slice of the aftbody
"is considered

FOR ZSegment% = 0 TO NumLeadEdgeLongSeg% + NumNonLeadEdgeLongSeg% -1
'each aftbody area between adjacent fins
'is considered

FOR FinNumber% = 0 TO NumFins% -1 ^ _ _,
the radial facets in each aftbody area
'3X6 considsrsd

FOR AftBodyRadSegNumber% = 0 TO NumAftBodyRadSegPerFin% -1
NormalDotProduct = XAftBodyNormal(FinNumber%, AftBodyRadSegNumber%)

XviewNormal + YAftBodyNormal(FinNumber%,
AftBodyRadSegNumber%) * YViewNormal

'only those aftbody facets with normals
'that point "toward" the viewer are
'considered

IF (NormalDotProduct > 0) THEN _ _,
'the midpoint position of the aftbody
'facet is determined

ZNow = 0
YNow = 0
FOR Corner0/» = 1 TO 4 jo CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,

Corner0/©), YAftBodyPos(FinNumber%,
AftBodyRadSegNumber%, Corner%),
ZAftBodyPos(ZSegment%, Corner%), XSpace, YSpace,
ZSpace)

ZNow = ZNow + ZSpace / 4
YNow = YNow + YSpace / 4
NEXT Corner% . _, .

'the original color of the midpoint
position pixel is determined and saved

OldColor = POINT(ZNow * Scale, YNow * Scale)
'the midpoint position pixel of the
'aftbody facet is flashed

FOR l% = 1 TO NumBlinks%
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
FOR T = 1 TO BlinkDuration: NEXT T
CALL Plot3DPoint(1, YNow, ZNow, NewColor)
FOR T = 1 TO BlinkDuration: NEXT T
NEXTI%

'the farthest distance of the aftbody
'facet from the viewer is determined

XFacetMax = -9999
FOR Comer% = 1 TO 4 ..„»...-»,

CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,
Corner0/^, YAftBodyPos(FinNumber%,
AftBodyRadSegNumber%, Corner%),

60

ZAftBodyPos(ZSegment%, Corner%), XSpace, YSpace,
ZSpace)

IF (XSpace > XFacetMax) THEN XFacetMax = XSpace
NEXT Comer%

IF (XFacetMax < XTest) THEN

further testing continues only if the
farthest distance of the aftbody facet
"from the viewer is less than the distance
to the projectile facet under consideration

'the vertical extremes of the possible
'blocking aftbody facet are determined

YFacetMin = 9999
YFacetMax = -9999
FOR Corner0/» = 1 TO 4 ^ „

CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,
Corner0/»), YAftBodyPos(FinNumber%,
AftBodyRadSegNumber%, Corner%),
ZAftBodyPos(ZSegment%, Corner%), XSpace, YSpace,
ZSpace)

IF (YSpace > YFacetMax) THEN YFacetMax = YSpace
IF YSpace < YFacetMin) THEN YFacetMin = YSpace
NEXT Corner0/»

'the midpoint vertical position of the
"facet that is being tested for blockage
'is compared to the vertical extremes of
'the potentially blocking aftbody facet,
'if the midpoint is contained within the
'range of the aftbody facet's extremes,
'then further testing will be performed
'that considers horizontal overlap, if
'not, then this aftbody facet can not be
'blocking.

IF ((YFacetMin < YTest) AND (YFacetMax > YTest)) THEN
'the horizontal extremes of the possible
'blocking aftbody facet are determined

ZFacetMin = 9999
ZFacetMax = -9999
FOR Corner0/» = 1 TO 4

CALL TransCoordBS(XAftBodyPos(FinNumber%, AftBodyRadSegNumber%,
Corner0/»), YAftBodyPos(FinNumber%,
AftBodyRadSegNumber%, Corner0/»),
ZAftBodyPos(ZSegment%, Corner3/»), XSpace, YSpace,
ZSpace)

IF (ZSpace > ZFacetMax) THEN ZFacetMax = ZSpace
IF ZSpace < ZFacetMin) THEN ZFacetMin = ZSpace
NEXT Comer0/»

'the midpoint horizontal position of the
facet that is being tested for blockage
'is compared to the horizontal extremes of
'the potentially blocking aftbody facet,
'if the midpoint is contained within the
'range of the aftbody facet's extremes,
then it is concluded that the aftbody
facet will block the facet being tested.

IF ((ZFacetMin < ZTest) AND (ZFacetMax > ZTest)) THEN
BEEP

the aftbody facet midpoint position pixel
'is returned to its original color

CALL Plot3DPoint(1, YNow, ZNow, OldColor)
Ans% = 0
GOTO Hidden

'if this aftbody facet is determined not
to block the facet under consideration,
then the aftbody facet's midpoint
'position pixel is simply returned to its
'original color

61

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

'if this aftbody facet is determined not
'to block the facet under consideration,
'then the aftbody facet's midpoint
'position pixel is simply returned to its
'original color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

'if this aftbody facet is determined not
"to block the facet under consideration,
"then the aftbody facet's midpoint
'position pixel is simply returned to its
'original color

ELSE
CALL Plot3DPoint(1, YNow, ZNow, OldColor)
END IF

END IF
NEXT AftBodyRadSegNumber%

NEXT FinNumber%
NEXT ZSegment%

SkipAftBody:

Hidden:

END SUB

SUB lnit3DDisplay
i***

THIS SUBROUTINE INITIALIZES THE GRAPHIC VIEWPORT USING THE PREVIOUSLY
■DETERMINED SCALE FACTOR. THE GRAPHIC DISPLAY PARAMETERS ARE THEN OUTPUT
'IN LEADER FORMAT TO THE DATA STORAGE FILE. FINALLY, THE GRAPHIC DISPLAY
'COLORS ARE DEFINED.
»**»»*«*»«»**»**»***#*************♦***********************»**

SHARED YSpaceMin, YSpaceMax, ZSpaceMin, ZSpaceMax, Scale, Controls
SHARED ScreenWidth, ScreenHeight, AspectRatio

DIMC&(15)
'the graphic viewport is initializes to

, 'cover the entire monitor screen

'the viewport coordinate system is
'defined, the overlap variables pertain to
'those portions of the less restrictive
'direction that are essentually left empty

IF (Controls = "Y") THEN
/Overlap = ScreenWidth - Scale * ABS(ZSpaceMax - ZSpaceMin)
WindowXI = ZSpaceMin * Scale - ZOverlap / 2
WindowYI = YSpaceMin * Scale
WindowX2 = ZSpaceMax * Scale + ZOverlap / 2
WindowY2 = YSpaceMax * Scale
WINDOW ((WindowXI + WindowX2) / 2 - AspectRatio * (WindowX2 - WindowXI) / 2,

WindowYI)-((WindowX1 + WindowX2) / 2 + AspectRatio *
(WindowX2 - WindowXI) / 2, WindowY2)

END IF

IF (Controls = "Z") THEN
YOverlap = ScreenHeight - Scale * ABS(YSpaceMax - YSpaceMin)

62

SCREEN 12
VIEW (1,1)-(ScreenWidth, ScreenHeight), 1

WindowXI = ZSpaceMin * Scale
WindowYI = YSpaceMin * Scale - YOverlap / 2
WindowX2 = ZSpaceMax * Scale
WindowY2 = YSpaceMax * Scale + YOverlap / 2
WINDOW ((WindowXI + WindowX2) / 2 - AspectRatio * (WindowX2 - WindowXI) / 2,

WindowYI)-((WindowX1 + WindowX2) / 2 + AspectRatio *
(WindowX2 - WindowXI) / 2, WindowY2)

END IF
'graphic screen definition parameters are
'saved in the data storage file

PRINT #1, "graphic scale factor:"
PRINT #1, Scale
PRINT #1, "WindowXI:"
PRINT #1, WindowXI
PRINT #1, "WindowYI:"
PRINT #1, WindowYI
PRINT #1,"WindowX2:H

PRINT #1,WindowY2

Blue = 63
Breen = 63

'palette colors 3 through 15 are defined
'to be shades of gray with 3 being black
'and 15 being white.

FOR l% = 3 TO 15
C&(l%) = 65536 * INT(((I% - 3) /12) * Blue) + 256 * INT(((I% - 3) /12) * Green) +

INT(((l%-3)/12)*Red)
NEXT l% „..,,.., ^ t.. ■ 'palette color 0 is defined to be black

for "erasing" purposes, color 1 will
'serve as the backgroung color, and color
"2 will be used for drawing construction
'lines

PALETTE USING C&(0)

END SUB

SUB InputParameters
,,»«*«»«**

THIS SUBROUTINE REQUESTS THE USER TO INPUT PARAMETER VALUES FOR THE
'PROJECTILE'S DIMENSIONS, TEMPERATURE, MATERIAL CHARACTERISTICS, AND
•ORIENTATION. THIS INFORMATION IS THEN SAVED AS LEADER INFORMATION IN
'A DATA FILE USING A FILE NAME WHICH IS SUPPLIED BY THE USER.

** **

SHARED LengthNoseCone, DeltaZNoseCone, NumNoseConeLongSeg%, RadNoseCone
SHARED NumNoseConeRadSeg%, LengthBody, DeltaZBody, NumBodyLongSeg%
SHARED RadBody, NumBodyRadSeg%, NumFins%, ThickFin, LengthBaseFin
SHARED LengthLeadEdgeFin, DeltaZFin, NumLeadEdgeLongSeg%
SHARED NumNonLeadEdgeLongSeg%, HeightFin, DeltaRadFin, NumFinRadSeg%
SHARED NumAftBodyRadSegPerFin%, Euler(), File1$, NoseForwTemp
SHARED NoseRearTemp, NoseEmis, BodyForwTemp, BodyRearTemp, BodyEmis
SHARED FinOuterWRTInnerTernp, FinLeadTemp, FinTrailTemp, FinEmis
SHARED AftBodyForwTemp, AftBodyRearTemp, AftBodyEmis

CLS
'the user is requested to enter projectile
'parameter information

INPUT "Enter the length of the nose cone in millimeters:"; LengthNoseCone

63

LengthNoseCone = LengthNoseCone /1000
PRINT

INPUT "Enter the nose cone longitudinal segment length in millimeters:"; DeltaZNoseCone
DeltaZNoseCone = DeltaZNoseCone /1000
PRINT

NumNoseConeLongSeg% = CINT(LengthNoseCone / DeltaZNoseCone)

INPUT "Enter the radius of the nose cone base in millimeters:"; RadNoseCone
RadNoseCone = RadNoseCone /1000
PRINT

INPUT "Enter the number of nose cone cord segments:"; NumNoseConeRadSeg%
PRINT

INPUT "Enter the length of the body in millimeters:"; LengthBody
LengthBody = LengthBody /1000
PRINT

INPUT "Enter the body longitudinal segment length in millimeters:"; DeltaZBody
DeltaZBody = DeltaZBody /1000
PRINT

NumBodyLongSeg% = CINT(LengthBody / DeltaZBody)

INPUT "Enter the radius of the body in millimeters:"; RadBody
RadBody = RadBody /1000
PRINT

INPUT "Enter the number of body cord segments:"; NumBodyRadSeg%
PRINT

INPUT "Enter the number of fins:"; NumFins%
PRINT

INPUT "Enter the fin thickness in millimeters:"; ThickFin
ThickFin = ThickFin /1000
PRINT

INPUTJ'Enter the base length of the fin in millimeters:"; LengthBaseFin
Lenc
PRlf
LengthBaseFin = LengthBaseFin /1000
"INT

INPUT "Enter the base length of the fin leading edge in millimeters:"; LengthLeadEdgeFin
LengthLeadEdgeFin = LengthLeadEdgeFin /1000
PRINT

INPUT "Enter the fin longitudinal segment length in millimeters:"; DeltaZFin
DeltaZFin = DeltaZFin /1000
PRINT

NumLeadEdgeLongSeg% = CINT(LengthLeadEdgeFin / DeltaZFin)
NumNonLeadEdgetongSeg% = CINT((LengthBaseFin - LengthLeadEdgeFin) / DeltaZFin)

INPUT_"Enter the fin height in millimeters:"; HeightFin
Heig ""
PRlT
HeightFin = HeightFin /1000
"HINT

INPUT "Enter the fin transverse segment length in millimeters:"; DeltaRadFin
DeltaRadFin = DeltaRadFin /1000
PRINT

NumFinRadSeg% = CINT(HeightFin / DeltaRadFin)

INPUT "Enter the number of aft body cord segments between fins:";

64

NumAftBodyRadSegPerFin%
PRINT

INPUT "Enter the three Euler angles in degrees:"; Euler(1), Euler(2), Euler(3)
FOR l% = 1 TO 3

Euler(l%) = Euler(l%) * 3.14159 /180
NEXT l%

PRINT

INPUT "Enter the nose cone forward tip temperature:"; NoseForwTemp
PRINT

INPUT "Enter the nose cone rear base temperature:"; NoseRearTemp
PRINT

INPUT "Enter the nose cone emissivity:"; NoseEmis
PRINT

INPUT "Enter the body forward temperature:"; BodyForwTemp
PRINT

INPUT "Enter the body rear temperature:"; BodyRearTemp
PRINT

INPUT "Enter the body emissivity:"; BodyEmis
PRINT

PRINT "Enter the fin outer edge temperature relative to"
INPUT" the inner edge temperature:"; FinOuterWRTInnerTemp
PRINT

PRINT "Enter the fin leading edge temperature"
INPUT" at the inner edge:"; FinLeadTemp
PRINT

PRINT "Enter the fin trailing edge temperature "
INPUT" at the inner edge:"; FinTrailTemp
PRINT

INPUT "Enter the fin emissivity:"; FinEmis
PRINT

INPUT "Enter the aftbody forward temperature:"; AftBodyForwTemp
PRINT

INPUT "Enter the aftbody rear temperature:"; AftBodyRearTemp
PRINT

INPUT "Enter the aftbody emissivity:"; AftBodyEmis
PRINT

INPUT "Enter the storage data file name:"; File1$
PRINT

'the projectile parameters are saved as
'leader information in a data file

OPEN "C:\QB45\IRMODELV + File1$ FOR OUTPUT AS #1

PRINT #1, "length of nose cone in meters:"
PRINT #1, LengthNoseCone
PRINT #1, "nose cone longitudinal segment length in meters:"
PRINT #1, DeltaZNoseCone
PRINT #1, "number of nose cone longitudinal segments:"
PRINT #1, NumNoseConeLongSeg%
PRINT #1, "nose cone radius in meters:"
PRINT #1, RadNoseCone
PRINT #1, "number of nose cone cord segments:"

65

PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1
PRINT #1

NumNoseConeRadSeg%
"length of body in meters:"
LengthBody
"body longitudinal segment length in meters:"
DeltaZBody
"number of longitudinal body segments:"
NumBodyLongSeg%
"body radius in meters:"
RadBody
"number of body cord segments:"
NumBodyRadSeg%
"number of fins:
NumFins%
"fin thickness in meters:"
ThickFin
"total fin base length in meters:"
LengthBaseFin
"base length of fin leading edge in meters:"
LengthLeadEdgeFin
"fin longitudinal segment length in meters:"
DeltaZFin
"number of fin leading edge longitudinal segments:"
NumLeadEdgeLongSeg%
"number of fin nonleading edge longitudinal segments:"
NumNonLeadEdgeLongSeg%
"fin height in meters:"
HeightFin
"fin transverse segment length in meters:"
DeltaRadFin
"number of fin radial segments:"
NumFinRadSeg%
"number of aft body cord segments between fins:"
NumAftBodyRadSegPerFin%
"Euler angle 1:"
Euler(1)* 180/ 3.14159
"Euler angle 2:"
Euler(2)* 180/3.14159
"Euler angle 3:"
Euler(3)* 180/3.14159
"nose cone forward tip temperature:"
NoseForwTemp
"nose cone rear base temperature:"
NoseRearTemp
"nose cone emissivity:"
NoseEmis
"body forward temperature:"
BodyForwTemp
"body rear temperature:"
BodyRearTemp
"body emissivity:"
BodyEmis
"fin outer edge temperature wrt inner edge temperature:
FinOuterWRTInnerfemp
"fin leading edge temperature at the inner edge:"
FinLeadTemp
"fin trailing edge temperature at the inner edge:"
FinTrailTemp
"fin emissivity:"
FinEmis
"aftbody forward temperature:"
AftBodyForwTemp
"aftbody rear temperature:"
AftBodyRearTemp
"aftbody emissivity:"
AftBodyEmis
"name of this data file:"

66

PRINT #1,File1$

END SUB

SUB LoadDataFile (Type$, X(), Y(), Z(), NormalDotProduct, Area, Temp, Emis)

>********** ***

THIS SUBROUTINE IS USED TO LOAD THE INFORMATION ABOUT A FACET INTO THE DATA
•STORAGE FILE

»...****.**

PRINT #1, USING "V \ , +#.#### +#.#### +#.#### +#.#### +#.#### +#.#### +#■####

#!#?; Type$; X(1); Y(1); Z(1); X(2); Y(2); Z(2); X(3); Y(3); Z(3); X(4); Y(4);
Z(4); NormalDotProduct; Area; Temp; Emis

END SUB

SUB Plot3DLine (X, Y, Z, C1)
,**«»***

THIS SUBROUTINE IS USED TO PLOT A LINE FROM THE PREVIOUS GRAPHIC SCREEN
'POSITION TO THE NEWLY PROVIDED COORDINATES
„,„«*»****,***»***

SHARED Scale

LINE -(Z * Scale, Y * Scale), C1

END SUB

SUB Plot3DPoint (X, Y, Z, C1)

»*.***..***.*..**

THIS SUBROUTINE IS USED TO PLOT A POINT ON THE GRAPHIC DISPLAY

,.*..*.***.***

SHARED Scale

PSET (Z * Scale, Y * Scale), C1

END SUB

SUB TransCoordBS (XOId, YOld, ZOId, XSpace, YSpace, ZSpace)

,*****«**«*** ***

THIS SUBROUTINE TRANSFORMS FROM PROJECTILE BODY COORDINATES TO SPACE
•COORDINATES.
Ml**

SHARED E()

DIM COId(3), CNew(3)

COIdM) = XOId
COId 2 = YOld
COId 3 = ZOId

**

67

FOR 1% = 1 TO 3
CNew(l%) = 0
FOR J% = 1 TO 3

CNew(l%) = CNew(l%) + COId(J%) * E(l%, J%)
NEXT J%

NEXTl%

XSpace = CNewM
YSpace = CNew 2
ZSpace = CNew(3

END SUB

SUB TransCoordSB (XSpace, YSpace, ZSpace, XBody, YBody, ZBody)
Mt******************* ***"

THIS SUBROUTINE TRANSFORMS FROM SPACE COORDINATES TO PROJECTILE BODY
'COORDINATES.
#♦** **

SHARED E()

DIM COId(3), CNew(3)

COId(1) = XSpace
COId 2 = YSpace
COkJ(3) = ZSpace

FOR l% = 1 TO 3
CNew(l%) = 0
FOR J% = 1 TO 3

CNew(l%) = CNew(l%) + COId(J%) * E(J%, l%)
NEXT J%

NEXT l%

XBody = CNew(1
YBody = CNew 2;
ZBody = CNew(3)

END SUB

68

APPENDIX B:

PENETRATOR IR EMISSION CALCULATION SOFTWARE

69

INTENTIONALLY LEFT BLANK.

70

This software calculates the spectral and spatial distributions of infrared (IR) radiation emitted

by a kinetic energy (KE) penetrator. A data file must be input to this program that has been

generated by the previously discussed and listed facet model generation software. Microsoft

QuickBasic 4.5 is used as the programming environment. If you have any questions about this

code, please contact Tom Kottke at:

AMSRL-WT-WD
Survivability Concepts Branch
Weapons Concepts Division, Bldg. 120
Weapons Technology Directorate
U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066
(410) 278-2557

'subroutines are declared
DECLARE SUB ReadlnputDatal ()
DECLARE SUB ReadlnputData2J)
DECLARE SUB DeterPlotColor (Temp, C)
DECLARE SUB lnit3DDisp ()
DECLARE SUB Plot3DPoint (X, Y, Z, C1)
DECLARE SUB Plot3DLine (X, Y, Z, C1)
DECLARE SUB DeterPFacet (FacNumber%, SpecWinNumber%, PofL)
DECLARE SUB OutputData ()

CLS
'Euler angle variable is dimensioned

DIM Euler(3)
'leader data is input from datafile
'output file name is specified

CALL ReadlnputDatal

PRINT "Enter the file name that the calculated spectral data is to be"
INPUT" saved in:"; File2$

'other array variables are dimensioned
DIM Type$(NumFacets%), X(NumFacets%, 4), Y(NumFacets%, 4), Z(NumFacets%, 4)
DIM NormalCos(NumFacets%), Area(NumFacets%), Temp(NumFacets%)
DIM Emis(NumFacets%), ZAve(NumFacets%)

facet data is input from datafile
CALL ReadlnputData2

'minimum and maximum facet temperatures
'are determined

TempMin = 9999
TempMax = -9999
FOR 1% = 1 TO NumFacets%

IF (Temp(l%) < TempMin) THEN TempMin = Temp(l%)
IF Temp l% > TempMax) THEN TempMax = Temp(l%)
NEXTl%

'the average horizontal position is
'calculatedfor each facet

FOR l% = 1 TO NumFacets%
ZAve(l%) = 0
FOR J% = 1 TO 4

ZAve(l%) = ZAve(l%) + Z(l%, J%) / 4
NEXT J%

NEXTl%
'the minimum and maximum average

71

'horizontal facet positions are
'determined

ZAveMin = 1E+10
ZAveMax = -1E-10

FOR l% = 1 TO NymFacets%
IF (ZAvel
IF (ZAvel
NEXTl%

IF (ZAve(l%) < ZAveMin) THEN ZAveMin = ZAve(l%)
IF ZAve(l%) > ZAveMax) THEN ZAveMax = ZAve(l%)

PRINT "Minimum Z Average Value:H; ZAveMin
PRINT _ .,
PRINT "Maximum Z Average Value:"; ZAveMax
PRINT

'the minimum and maximum average
•horizontal facet positions are output to
'the screen to allow the user to determine
'the horizontal range over which IR
'spectral calculations are to be
'performed

the user enters information regarding the
'spatial and spectral extents over which
'the IR calculations are to be performed

INPUT "Enter the number of spatially resolved regions:"; NumZRegions%
PR'NT -, . PRINT "Enter the minimum and maximum Z values of the
INPUT" total spatial region:"; ZSPatialMin, ZSpatialMax
ZSpatialSize = (ZSpatialMax - ZSPatialMin) / NumZRegions%
PRINT ,_. . . _ . „
INPUT "Enter the minimum spectral wavelength in microns: ; SpecMin
PRINT ,_. . „ „ „
INPUT "Enter the maximum spectral wavelength in microns: ; SpecMax
PRINT
INPUT "Enter the span of each spectral window in microns:"; SpecWindowSize
NumSpecWindows% = (SpecMax - SpecMin) / SpecWindowSize
PRINT

'user enters projectile's range from the
'assumed IR detector. This information is
'used to calculate the intensity of the
'IR radiation that is incident on the
'detector

INPUT "Enter the range to the projectile in meters:"; ProjRange
PRINT

'radiant flux array variables are
'dimensioned

DIM P(NumZRegions%, NumSpecWindows%), PRegion(NumZRegions%) v a '3D grapnic display is initialized
CALL lnit3DDisp ^ mesh ^^ rf p^^ fe

■presented graphically in a neutral
'color to illustrate what portions of
'the penetrator are contained in each
'spatial zone

FOR l% = 1 TO NumFacets%
CALL Plot3DPoint(X(l%, 4), Y(l%, 4), Z(l%, 4), 15)
FOR J% = 1 TO 4

CALL Plot3DLine(X(l%, J%), Y(l%, J%), Z(l%, J%), 15)
NEXT J%

° the radiant flux from each spatial
'region is calculated

FOR ZRegNumber% = 1 TO NumZRegions% ,..,.„
'the limits of the spatial region under
'consideration are calculated

ZRegMin = ZSPatialMin + (ZRegNumber% -1) * ZSpatialSize
ZRegMax = ZSPatialMin + ZRegNumber% * ZSpatialSize
FOR FacNumber% = 1 TO NumFacets%

72

'each facet is checked to determine if it
'is located in the spatial region under
'consideration

IF ((ZAve(FacNumber%) >= ZRegMin) AND (ZAve(FacNumber%) < ZRegMax)) THEN
'if a given facet is determined to be
'located in the spatial region under
'consideration its facet is redrawn in a
'color that is indicative of its
'temperature

CALL DeterPlotColorgemp(FacNumber%), C) , % Äl
CALL Plot3DPoint(X(FacNumber%, 4), Y(FacNumber%, 4), Z(FacNumber%, 4), C)
FOR Corner% = 1 TO 4

CALL Plot3DLine(X(FacNumber%, Comer%), Y(FacNumber%, Corner%),
Z(FacNumber%, Corner0/»), C)

NEXT Corner3/«,
the contribution of the facet to the
'radiance within each spectral zone is
'calculated and added to the total
'radiance produced by the spatial region
'under consideration

FOR SpecWinNumber% = 1 TO NumSpecWindows%
CALL DeterPFacet(FacNumber%, SpecWinNumber%, PofL)
P(ZRegNumber%, SpecWinNumber%) = P(ZRegNumber%, SpecWinNumber%) + PofL
NEXT SpecWinNumber%

END IF
NEXT FacNumber%

NEXT ZRegNumber%
'the maximum spectral radiance within any
'spectral or spatial region is determined
'for display scaling

PMax SB -99999
FOR ZRegNumber% = 1 TO NumZRegions%

FOR SpecWinNumber% = 1 TO NumSpecWindows%
IF (P(ZRegNumber%, SpecWinNumber%) > PMax) THEN PMax = P(ZRegNumber%,

SpecWinNumber%)
NEXT SpecWinNumber%

NEXT ZRegNumber% , J x
'the spectral radiance is displayed for
'each spatial region

FOR ZRegNumber% = 1 TO NumZRegions%
PSET ((ZSPatialMin + ZRegNumber% -1) * ZSpatialSize + (1 / NumSpecWmdows%)

ZSpatialSize) * Scale, WindowYI + (P(ZRegNumber%, 1) /
PMax) * (WindowY2 - WindowYI) / 4), 15

FOR SpecWinNumber% = 2 TO NumSpecwindows%
LINE -((ZSPatialMin + (ZRegNumber% -1) * ZSpatialSize + (SpecWinNumber% /

NumSpecWindows%) * ZSpatialSize) * Scale, WindowYI +
P(ZRegNumber%, SpecWinNumber%) / PMax) * (WindowY2 ■

WindowYI)/4), 15
NEXT SpecWinNumber%

NEXT ZRegNumber%

LOCATE 28, 1
PRINT "Press any key to continue...
DO

LOOP WHILE INKEY$ = "
LOCATE 28, 1
PRINT"

'wait for operator's response

PTotal = 0
FOR ZRegNumber% = 1 TO NumZRegions%

PRegion(ZRegNumber%) = 0
FOR SpecWinNumber% = 1 TO NumSpecWindows%

PTotal = PTotal + P(ZRegNumber%, SpecWinNumber%)

73

'the radiant flux for the total spectral
'region under consideration is determined
'for each spatial region and the entire
'penetrator

PRegion(ZRegNumber%) = PRegion(ZRegNumber%) + P(ZRegNumber%, SpecWinNumber%)
NEXT SpecWinNumber%

NEXT ZRegNumber% _,
'radiant flux integrated over the spatial
"regions is displayed for integrations
'beginning at the left and the right of
'the penetrator

PAccum = 0
FOR ZRegNumber% = 1 TO NumZRegions%

PAccum = PAccum + PRegion(ZRegNumber%)

(WindowY2 - WindowYI) + WindowYI), 1,15
CIRCLE ((ZSPatialMin + (ZRegNumber% - .5) * ZSpatialSize) * Scale, ((PTotal - PAccum) /

PTotal) * (WindowY2 - WindowYI) + WindowYI), (WindowY2 - WindowYI) /
150,15

PAINT ((ZSPatialMin + (ZRegNumber% - .5) * ZSpatialSize) * Scale, ((PTotal - PAccum) /
PTotal) * (WindowY2 - WindowYI) + WindowYI), 14,15

NEXT ZRegNumber% _. . ,.
the calculated radiant flux values are
'output to a data file

CALL OutputData
'wait for operator s response

DO
LOOP WHILE INKEY$ = "

SUB DeterPFacet (FacNumber%, SpecWinNumber%, PofL)
„►«.******»«»«*»*.**»**»******«***

THIS SUBROUTINE CALCULATES THE SPECTRAL RADIANT FLUX EMITTED BY A SINGLE
'FACET AND COLLECTED BY THE DETECTOR
i***

This subroutine calculates the spectral radiant flux (P of Lambda)
"from a single facet to the detector. P is the rate at which radiant
'energy is transferred from the facet to the detector. This quantity
is determined by first calculating the spectral radiant emittance
(W of Lambda) which is the radiant flux emitted per unit source area
'per unit wavelength interval at a particular wavelength and is
'calculated for a particular wavelength using the expression

C1 1
W(L)=n*—*

LA5 exp(C2/LT)-1

"where: W(L) is the spectral radiant emittance in units of
watts/(mA2*micron)

n is the emissivity
L represents lambda which is the wavelength in microns
T is the absolute temperature in degrees Kelvin; K=C+273.16
C1 is the first radiation constant equal to

3.7415E+8 Watt*micronA4/mA2
C2 is the second radiation constant equal to

1.43879E+4 micron*degree K

Making the assumption that the facet is a perfectly diffuse, or
Lambertian, source, the spectral radiance (N of Lambda), which is
'the radiant flux per unit solid angle per unit area of source per
unit wavelength interval at a particular wavelength (phew!), is
calculated from the spectral radiant emittance through the simple
relationship (N of Lambda)=(W of Lambda)/(Pi). Finally, the spectral
radiant flux is calculated by multiplying the spectral radiant
emittance by the effective source area, the solid angle subtended by

74

'the detector, and the span of the wavelength interval under
'consideration. The detector is assumed to have an effective area of
'1 square centimeter.

SHARED Area(), TempQ, Emisj), NormalCos(), SpecMin, SpecWindowSize
SHARED ProjRange, X), Y(), Z() ... ^- ..

' 'define the values of the radiation
'constants

C1 = 3.7415E+08 * W*uA4/mA2
C2 = 14387.9 ' u*K

'calculate the value of the wavelength
'under consideration

Lambda = SpecMin + (SpecWinNumber% -1) * SpecWindowSize
'calculate the spectral radiant emittance

FirstTerm = C1 / (Lambda A 5)
Exponent = C2 / (Lambda * (273.16 + Temp(FacNumber%)))
IF (Exponent < 60) THEN

SecondTerm = 1 / (EXP(Exponent) -1)
ELSE
SecondTerm = 0
END IF

WofL = Emis(FacNumber%) * FirstTerm * SecondTerm
'calculate the spectral radiance

NofL = WofL/3.14159
'calculate the effective source area

EffArea = Area(FacNumber%) * NormalCos(FacNumber%)
'calculate the average distance of the
'facet from the detector

Distance = 0
FOR Comer% = 1 TO 4 „.„».„

Distance = Distance + SQR((X(FacNumber%, Comer%) + ProjRange) A 2 +
Y(FacNumber%, Corner%) A 2 + Z(FacNumber%, Comer%) A 2) / 4

NEXTCorner% ,._, , w _, JU
'calculate the solid angle subtended by a
'1 square centimeter detector

SolidAngle = .0001 / Distance A 2 „
'calculate the spectral radiant flux
'incident on the 1 square centimeter
'detector

PofL = NofL * EffArea * SolidAngle * SpecWindowSize

END SUB

SUB DeterPlotColor (Temp, C)

THIS SUBROUTINE ASSIGNS A GRAPHIC DISPLAY COLOR BASED ON THE TEMPERATURE
'OF A FACET
,******♦«*««******»******«•*******«***

SHARED TempMin, TempMax

C = CINT(((Temp - TempMin) / (TempMax - TempMin)) * 13 + 1)

END SUB

SUB lnit3DDisp
i******************** ***

THIS SUBROUTINE INITIALIZES AND SCALES THE GRAPHIC DISPLAY WINDOW, DEFINES
THE GRAPHIC PALLETE, AND VISUALLY DISPLAYS THE SPATIAL EXTENT OF THE
•INDIVIDUAL IR CALCULATION REGIONS

75

I***

SHARED WindowXI, WindowYI, WindowX2, WindowY2, NumZRegions%, ZSPatialMin
SHARED ZSpatialMax, ZSpatialSize, Scale

DIM C&(15) . ,. ^ _, . J 'graphic display is initialized and sized
SCREEN 12
VIEWM, 1W638, 398)
WINDOW (WindowXI, WindowYI)-(WindowX2, WindowY2)

'graphic pallete is defined
C&(0) = 65536 * 0 + 256 * 0 + 0
C& 14) = 65536 * 0 + 256 * 0 + 63
C& 13 = 65536 * 0 + 256 * 19 + 63
C& 12 =65536*0 + 256*30 + 63
C& 11 = 65536 * 0 + 256 * 40 + 63
C& 10 = 65536 * 0 + 256 * 50 + 63
C& 9) = 65536 * 0 + 256 * 60 + 63
C& 8 = 65536 * 0 + 256 * 63 + 42
C& 7 = 65536 * 0 + 256 * 62 + 21
C& 6 = 65536 * 0 + 256 * 55 + 0
C& 5 = 65536 * 12 + 256 * 43 + 0
C& 4 = 65536 * 23 + 256 * 36 + 0
C& 3 = 65536 * 37 + 256 * 28 + 0
C& 2) = 65536 * 49 + 256 * 21 + 0
C& 1) = 65536 * 63 + 256 * 0 + 0
C& 15) = 65536 * 63 + 256 * 63 + 63

PALETTE USING C&(0)

'spatial extent of IR calculation regions
'is displayed graphically

FOR l% = 1 TO NumZRegions%
C% = 15
LINE ((ZSPatialMin + (l% -1) * ZSpatialSize) * Scale, WindowYI)-((ZSPatialMin + 1% *

ZSpatialSize) * Scale, WindowY2), C%, B
NEXT 1%

END SUB

SUB OutputData
„►**»»«***

THIS SUBROUTINE OUTPUTS THE TOTAL RADIANT FLUX, THE RADIANT FLUX FROM EACH
•SPATIAL REGION AND THE SPECTRAL RADIANT FLUX FROM EACH REGION TO A DATAFILE
Mt**

SHARED File2$, File1$, PTotal, NumZRegions%, PRegion(), NumSpecWindows%
SHARED P()

OPEN File2$ FOR OUTPUT AS #2

PRINT #2, "Input data file:"
PRINT #2, File1$
PRINT #2,""
PRINT #2, "Total radiant flux:"
PRINT #2, PTotal
PRINT #2,""
FOR l% = 1 TO NumZRegions%

PRINT #2," Spatial region #"; l%
PRINT #2," Region radiant flux"
PRINT #2," "; PRegion(l%
FOR J% = 1 TO NumSpecWmdows%

PRINT #2," Spectral window #"; J%

76

PRINT #2," "; P(l%, J%)
NEXT J%

NEXT 1%

CLOSE #2

END SUB

SUB Plot3DLine (X, Y, Z, C1)
,*********»******»**

THIS SUBROUTINE PLOTS A DESIGNATED LINE ON THE GRAPHIC SCREEN IN A USER
'SELECTED COLOR
Mi**

'Note that the horizontal direction
'corresponds to the Z axis and the
'vertical direction corresponds to
'the Y axis.

SHARED Scale

LINE -(Z * Scale, Y * Scale), C1

END SUB

SUB Plot3DPoint (X, Y, Z, C1)
,**•*•••******••••***************** ***

THIS SUBROUTINE PLOTS A DESIGNATED POINT ON THE GRAPHIC SCREEN IN A USER
'SELECTED COLOR

i***

'Note that the horizontal direction
'corresponds to the Z axis and the
'vertical direction corresponds to
'the Y axis.

SHARED Scale

PSET (Z * Scale, Y * Scale), C1

END SUB

SUB ReadlnputDatal
,***

THIS SUBROUTINE MAKES THE FIRST PASS THROUGH A PREVIOUSLY GENERATED DATA
'FILE THAT CONTAINS INFORMATION ABOUT A PENETRATOR'S GEOMETRY AND THERMAL
•PROPERTIES. DURING THIS FIRST PASS THA LEADER PARAMETERS ARE INPUT AND THE
'NUMBER OF SUBSEQUENT LINES OF FACET DATA IS DETERMINED

,***

SHARED LengthNoseCone, DeltaZNoseCone, NumNoseConeLongSeg%, RadNoseCone
SHARED NumNoseConeRadSeg%, LengthBody, DeltaZBody, NumBodyLongSeg%
SHARED RadBody, NumBodyRadSeg%, NumFins%, ThickFin, LengthBaseFin
SHARED LengthLeadEdgeFin, DeltaZFin, NumLeadEdgeLong_Seg%
SHARED NumNonLeadEdgeLongSeg%, HeightFin, DeltaRadFin, NumFinRadSeg%
SHARED NumAftBodyRadSegPerFin%, EulerQ, File1$, Scale, WindowXI
SHARED WindowYI, WindowX2, WindowY2, NumFacets%

'previously generated datafile is opened

77

INPUT "Enter input data file name:"; File1$

OPEN File1$ FOR INPUT AS #1

INPUT #1, leaders
INPUT #1, LengthNoseCone
PRINT leader$; LengthNoseCone

INPUT #1, leader$
INPUT #1, DeltaZNoseCone
PRINT leader$; DeltaZNoseCone

INPUT #1, leaders
INPUT #1, NumNoseConeLongSeg%
PRINT leader$; NumNoseConeLongSeg%

INPUT #1, leaders
INPUT #1,RadNoseCone
PRINT leaderS; RadNoseCone

INPUT #1, leaders
INPUT #1, NumNoseConeRadSeg%
PRINT leaderS; NumNoseConeRadSeg%

INPUT #1, leaders
INPUT #1, LengthBody
PRINT leaderS; LengthBody

'leader parameters that were used to
'generate the datafile are input and
'displayed on the screen

INPUT #1, leaders
INPUT #1, DeltaZBody
PRINT leaderS; DeltaZBody

INPUT #1, leaders
INPUT #1, NumBodyLongSeg%
PRINT leaderS; NumBodyLongSeg%

INPUT #1, leaders
INPUT #1,RadBody
PRINT leaderS; RadBody

INPUT #1, leaders
INPUT #1, NumBodyRadSeg%
PRINT leaderS; NumBodyRadSeg%

INPUT #1, leaders
INPUT #1, NumFins%
PRINT leaderS; NumFins%

INPUT #1, leaders
INPUT #1,ThickFin
PRINT leaderS; ThickFin

INPUT #1, leaders
INPUT #1, LengthBaseFin
PRINT leaderS; LengthBaseFin

INPUT #1, leaders
INPUT #1, LengthLeadEdgeFin
PRINT leaderS; LengthLeadEdgeFin

INPUT #1, leaders
INPUT #1, DeltaZFin
PRINT leaderS; DeltaZFin

78

INPUT #1, leader$
INPUT #1, NumLeadEdgeLongSeg%
PRINT leader$; Numl_eadEdgeLongSeg%

INPUT #1, leaders
INPUT #1, NumNonLeadEdgeLongSeg%
PRINT leaderS; NumNonLeadEdgeLongSeg%

INPUT #1, leaders
INPUT #1, Height Fin
PRINT leaderS; HeightFin

INPUT #1, leaders
INPUT #1,DeltaRadFin
PRINT leaderS; DeltaRadFin

INPUT #1, leaders
INPUT #1, NumFinRadSeg%
PRINT leaderS; NumFinRadSeg%

INPUT #1, leaders
INPUT #1, NumAftBodyRadSegPerFin%
PRINT leaderS; NumAftBodyRadSegPerFin%

INPUT #1, leaders
INPUT #1,Euler(1)
PRINT leaderS; Euler(1)

INPUT #1, leaders
INPUT #1,Euler(2)
PRINT leaderS; Euler(2)

INPUT #1, leaders
INPUT #1,Euler(3)
PRINT leaderS; Euler(3)

INPUT #1, leaders
INPUT #1, NoseForwTemp
PRINT leaderS; NoseForwTemp

INPUT #1, leaders
INPUT #1, NoseRearTemp
PRINT leaderS; NoseRearTemp

INPUT #1, leaders
INPUT #1, NoseEmis
PRINT leaderS; NoseEmis

INPUT #1, leaders
INPUT #1, BodyForwTemp
PRINT leaderS; BodyForwTemp

INPUT #1, leaders
INPUT #1, BodyRearTemp
PRINT leaderS; BodyRearTemp

INPUT #1, leaders
INPUT #1,BodyEmis
PRINT leaderS; BodyEmis

INPUT #1, leaders
INPUT #1, FinOuterWRTInnerTemp
PRINT leaderS; FinOuterWRTInnerTemp

INPUT #1, leaders
INPUT #1, FinLeadTemp

79

PRINT leader$; FinLeadTemp

INPUT #1, leader$
INPUT #1, FinTrailTemp
PRINT leader$; FinTrialTemp

INPUT #1, leader$
INPUT #1,FinEmis
PRINT leader$; FinEmis

INPUT #1, leaders
INPUT #1, AftBodyForwTemp
PRINT leaderS; AftBodyForwTemp

INPUT #1, leaders
INPUT #1, AftBodyRearTemp
PRINT leaderS; AftBodyRearTemp

INPUT #1, leaders
INPUT #1,AftBodyEmis
PRINT leaderS; AftBodyEmis

INPUT #1, leaders
INPUT #1,File1$
PRINT leaderS; File1$

INPUT #1, leaders
INPUT #1, Scale
PRINT leaderS; Scale

INPUT #1, leaders
INPUT #1,WindowX1
PRINT leaderS; WindowXI

INPUT #1, leaders
INPUT #1, WindowYI
PRINT leaderS; WindowYI

INPUT #1, leaders
INPUT #1, WindowX2
PRINT leaderS; WindowX2

INPUT #1, leaders
INPUT #1, WindowY2
PRINT leaderS; WindowY2
PRINT

NumFacets% = 0
DO

INPUT #1, TestS
NumFacets% = NumFacets% + 1
LOOP WHILE TestS <> "END"

NumFacets% = (NumFacets% -1) / 2

CLOSE #1

END SUB

'number of lines of data that describes
'each facet is determined

'datafile is closed

SUB ReadlnputData2
t***

THIS SUBROUTINE MAKES THE SECOND PASS THROUGH THE PREVIOUSLY GENERATED
DATA
'FILE THAT DESCRIBES THE PENETRATOR GEOMETRY AND THERMAL PROPERTIES. DURING

80

THIS PASS THE LEADER INFORMATION IS IGNORED BUT THE SUBSEQUENT LINES THAT
'DEFINE THE INDIVIDUAL FACET PARAMETERS ARE INPUT

SHARED File1$, NumFacets%, Type$(), X(), Y(), Z(), NormalCos()
SHARED Area(), Temp(), Emis()

OPEN File1$ FOR INPUT AS #1

INPUT #1,
INPUT #1,

leader$
LengthNoseCone

INPUT #1,
INPUT #1,

leader$
DeltaZNoseCone

INPUT #1,
INPUT #1,

leader$
NumNoseConeLongSeg%

INPUT #1,
INPUT #1,

leader$
RadNoseCone

INPUT #1,
INPUT #1,

leader$
NumNoseConeRadSeg%

INPUT #1,
INPUT #1,

leaders
LengthBody

INPUT #1
INPUT #1

leaders
DeltaZBody

INPUT #1
INPUT #1

leaders
NumBodyLongSeg%

INPUT #1
INPUT #1

leaders
RadBody

INPUT #1
INPUT #1

leaders
NumBodyRadSeg%

INPUT #1
INPUT #1

leaders
NumFins%

INPUT #1
INPUT #1

leaders
ThickFin

INPUT #1
INPUT #1

leaders
LengthBaseFin

INPUT #1
INPUT #1

leaders
LengthLeadEdgeFin

INPUT #1
INPUT #1

leaders
DeltaZFin

INPUT #1
INPUT #1

leaders
NumLeadEdgeLongSeg%

INPUT #1
INPUT #1

, leaders
, NumNonLeadEdgeLongSeg%

INPUT #1
INPUT #1

, leaders
, HeightFin

INPUT #1
INPUT #1

, leaders
, DeltaRadFin

"datafile is reopened

'leader data is input but not used

81

INPUT #1
INPUT #1

, leader$
, NumFinRadSeg%

INPUT #1
INPUT #1

, leader$
, NumAftBodyRadSegPerFin%

INPUT #1
INPUT #1

, leader$
, Euler

INPUT #1
INPUT #1

, leaders
, Euler

INPUT #1
INPUT #1

, leaders
, Euler

INPUT #1
INPUT #1

, leaders
, NoseForwTemp

INPUT #1
INPUT #1

, leaders
, NoseRearTemp

INPUT #1
INPUT #1

, leaders
, NoseEmis

INPUT #1
INPUT #1

, leaders
, BodyForwTemp

INPUT #1
INPUT #1

, leaders
BodyRearTemp

INPUT #1
INPUT #1

leaders
BodyEmis

INPUT #1
INPUT #1

leaders
FinOuterWRTI nnerTemp

INPUT #1
INPUT #1

leaders
FinLeadTemp

INPUT #1
INPUT #1

leaders
FinTrailTemp

INPUT #1
INPUT #1

leaders
FinEmis

INPUT #1
INPUT #1

leaders
AftBodyForwTemp

INPUT #1
INPUT #1

leaders
AftBodyRearTemp

INPUT #1
INPUT #1

leaders
AftBodyEmis

INPUT #1,
INPUT #1,

leaders
File1$

INPUT #1,
INPUT #1,

leaders
Scale

INPUT #1,
INPUT #1,

leaders
WindowXI

INPUT #1,
INPUT #1,

leaders
WindowYI

82

INPUT #1,leader$
INPUT #1,WindowX2

INPUT #1,leader$
INPUT #1,WindowY2

'data about the geometry and thermal
'properties of each facet is input

FOR l% = 1 TO NumFacets%
INPUT #1, Type$(l%), X(l%, 1), Y(l%, 1), Z(l%, 1), X(l%, 2), Y(l%, 2), Z(l%, 2), X(l%, 3),

Y l%, 3), Z(l%, 3), X(l%, 4), Y(l%, 4), Z(l%, 4),
NormalCos(l%), Area(l%), Temp(l%), Emis(l%)

NEXT l%
'datafile is closed

CLOSE #1

END SUB

83

INTENTIONALLY LEFT BUNK.

84

NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL INFO CTR
ATTN DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LAB
ATTN AMSRL OP SD TA
2800 POWDER MILL RD
ADELPHIMD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
ATTN AMSRL OP SD TL
2800 POWDER MILL RD
ADELPHIMD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
ATTN AMSRL OP SD TP
2800 POWDER MILL RD
ADELPHIMD 20783-1145

ABERDEEN PROVING GROUND

DIR USARL
ATTN AMSRL OP AP L (305)

85

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

DIRECTOR
US ARMY RESEARCH LAB
ATTN AMSRL PS
V GELNOVATCH
R HAMLEN
JKEY
AMSRL PS D M TOMPSETT
AMSRL PS T R REITMEYER
BLDG 2700
FT MONMOUTH NJ 07703-5601

DIRECTOR
US ARMY RESEARCH LAB
ATTN AMSRL SL E
G MARES
WSMR NM 88002-5501

VHCLE STRCTRS DIRECTORATE
ATTN AMSRL VS L D HOD
AMSRL VS S F BARTLETT
MS 266
NASA LANGLEY RSRCH CTR
HAMPTON VA 23681-0001

VHCLE PRPLSN DIRECTORATE
ATTN AMSRL VP C R BILL
AMSRL VP T G BOBULA
21000 BROOKPARK RD
CLEVELAND OH 44135-3191

ABERDEEN PROVING GROUND

25 DIR, USARL
ATTN: AMSRL-MA, J. DIGNAM (CNR)

AMSRL-MA-A, D. VIECHNICKI (CNR)
AMSRL-SE, J. MILLER (ALC)
AMSRL-SE-E, J. PELLEGRINO (ALC)
AMSRL-WT-N, J. INGRAM (ALC)
AMSRL-SL-B, P. DEITZ
AMSRL-SL-C, W. HUGHES
AMSRL-WT-P, A. HORST
AMSRL-WT-T, W. MORRISON
AMSRL-WT-W, C. MURPHY, JR.
AMSRL-WT-WD,

A. NIILER
P. BERNING
R. BOSSOLI
S. CORNELISON
A. GAUSS, JR.
C. HOLLANDSWORTH
C. HUMMER
L. KECSKES
T. KOTTKE
M. MCNEIR
J. POWELL
A. PRAKASH
D. STRENZWILK
C. STUMPFEL
G. THOMSON

86

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-MR-329 (Kottke) Date of Report August 1996

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report

will be used.) -—

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate _

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to

organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the

Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLWTWD
ABERDEEN PROVING GROUND MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

